本文整理汇总了Python中pylab.random函数的典型用法代码示例。如果您正苦于以下问题:Python random函数的具体用法?Python random怎么用?Python random使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了random函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: MSE
def MSE(sampleSize):
totalSE = 0.0
for i in range(sampleSize):
x = random() * 6.0
y = random() * 6.0
error = targetFunction(x,y) - f(x,y)
totalSE = totalSE + error * error
print 'The estimated MSE: ', (totalSE / sampleSize)
示例2: MSE
def MSE(sampleSize):
totalSE = 0.0
for i in range(sampleSize):
in1 = random() * 6.0
in2 = random() * 6.0
error = targetFunction(in1,in2) - f(in1,in2)
totalSE = totalSE + error * error
print('The estimated MSE: ', (totalSE / sampleSize))
示例3: test_com_jacobian
def test_com_jacobian(dq_norm=1e-3, q=None):
if q is None:
q = hrp.dof_llim + random(56) * (hrp.dof_ulim - hrp.dof_llim)
dq = random(56) * dq_norm
com = hrp.compute_com(q)
J_com = hrp.compute_com_jacobian(q)
expected = com + dot(J_com, dq)
actual = hrp.compute_com(q + dq)
assert norm(actual - expected) < 2 * dq_norm ** 2
return J_com
示例4: check_on_random_instance
def check_on_random_instance():
"""
Check our criterion with an LP solver on a random instance of the problem.
Returns the random point, the criterion's outcome on this point (true or
false) and whether an LP solution was found (positive or negative). If the
criterion is correct, true == positive and false == negative.
"""
K1, K2, K3, C1, C2 = 2 * pylab.random(5) - 1
px, py = X / (X + Y), Y / (X + Y)
D4max = .5 * min(2, 1 + C1, 1 + C2, 2 + C1 + C2)
D4min = .5 * max(-1 + C1, C1 + C2, -1 + C2, 0)
D4 = D4min + (D4max - D4min) * pylab.random()
D1, D2, D3 = .5 * (1 + C1) - D4, -.5 * (C1 + C2) + D4, .5 * (1 + C2) - D4
c = cvxopt.matrix(pylab.array([[1.]] * 8)) # score vector
G = cvxopt.matrix(pylab.array([
[+1, 0., 0., 0., 0., 0., 0., 0.],
[-1, 0., 0., 0., 0., 0., 0., 0.],
[0., +1, 0., 0., 0., 0., 0., 0.],
[0., -1, 0., 0., 0., 0., 0., 0.],
[0., 0., +1, 0., 0., 0., 0., 0.],
[0., 0., -1, 0., 0., 0., 0., 0.],
[0., 0., 0., +1, 0., 0., 0., 0.],
[0., 0., 0., -1, 0., 0., 0., 0.],
[0., 0., 0., 0., +1, 0., 0., 0.],
[0., 0., 0., 0., -1, 0., 0., 0.],
[0., 0., 0., 0., 0., +1, 0., 0.],
[0., 0., 0., 0., 0., -1, 0., 0.],
[0., 0., 0., 0., 0., 0., +1, 0.],
[0., 0., 0., 0., 0., 0., -1, 0.],
[0., 0., 0., 0., 0., 0., 0., +1],
[0., 0., 0., 0., 0., 0., 0., -1]]))
h = cvxopt.matrix(pylab.array([[1.]] * 16)) # h - G x >= 0
A = cvxopt.matrix(pylab.array([
[D1, D2, D3, D4, 0, 0, 0, 0],
[0, 0, 0, 0, D1, D2, D3, D4],
[-py * D1, +py * D2, +py * D3, -py * D4,
+px * D1, +px * D2, -px * D3, -px * D4]]))
b = cvxopt.matrix(pylab.array([K1, K2, K3]))
sol = cvxopt.solvers.lp(c, G, h, A, b)
K3min = -1 + py * abs(K1 - C1) + px * abs(K2 - C2)
K3max = 1 - py * abs(K1 + C1) - px * abs(K2 + C2)
is_true = K3min <= K3 <= K3max
is_positive = sol['x'] is not None
return is_true, is_positive, (K1, K2, K3, C1, C2)
示例5: main
def main():
shifts = [
[-1, 1], [0, 1], [1, 1],
[-1, 0], [1, 0],
[-1, -1], [0, -1], [1, -1]
]
num_atoms = 100
num_dims = 2 # dimensions
coords = pl.random((num_atoms, num_dims))
chosen = pl.random_integers(num_atoms) # from 1 to num_atoms
chosen -= 1 # from 0 to num_atoms - 1
for i in range(len(shifts)):
coords = pl.vstack((coords, coords[:num_atoms] + shifts[i]))
num_atoms *= 9 # after 8 shifts added
max_distance = 0.9
for i in range(num_atoms):
if i != chosen:
dx = coords[chosen, 0] - coords[i, 0]
dy = coords[chosen, 1] - coords[i, 1]
distance = pl.sqrt(dx*dx + dy*dy)
if distance < max_distance:
pl.plot([coords[i, 0]], [coords[i, 1]], "bo")
else:
pl.plot([coords[i, 0]], [coords[i, 1]], "ko")
# plot last for visibility
pl.plot([coords[chosen, 0]], [coords[chosen, 1]], "ro")
pl.grid(True)
pl.show()
示例6: get_reading
def get_reading (self):
reading = []
t = self.target
for s in self.sensors:
r = sqrt ((t[0] - s[0])**2 + (t[1] - s[1])**2) + (random () - 0.5)
reading.append ([s[0], s[1], r])
return reading
示例7: main
def main():
num_atoms = 64
num_dims = 2 # dimensions
coords = pl.random((num_atoms, num_dims))
axis_limits = [0.0, 1.0]
points = plot_atoms(coords, num_atoms, axis_limits)
update_limit = 16
update_count = 0
while True:
chosen = pl.random_integers(num_atoms) - 1 # [0, num_atoms - 1]
new_x, new_y = new_xy(coords, chosen, axis_limits)
energy_old, energy_new = energies(coords, chosen, num_atoms, new_x, new_y)
if energy_new < energy_old:
coords[chosen, 0] = new_x
coords[chosen, 1] = new_y
points[chosen].set_data([new_x, new_y])
update_count += 1
if not update_count < update_limit:
pl.draw()
update_count = 0
"""
示例8: beeswarm
def beeswarm(self, data, position, ratio=2.):
r"""Naive plotting of the data points
We assume gaussian distribution so we expect fewers dots
far from the mean/median. We'd like those dots to be close to the
axes. conversely, we expect lots of dots centered around the mean, in
which case, we'd like them to be spread in the box. We uniformly
distribute position using
.. math::
X = X + \dfrac{ U()-0.5 }{ratio} \times factor
but the factor is based on an arctan function:
.. math::
factor = 1 - \arctan( \dfrac{X - \mu }{\pi/2})
The farther the data is from the mean :math:`\mu`,
the closest it is to the axes that goes through the box.
"""
N = len(data)
m = np.median(data)
sd = np.std(data)
# arctan function to have a tapering window
factor = 1. - np.abs(np.arctan((data-m)/sd)/1.570796) # pi/2
newdata = position + (pylab.random(N) - 0.5)/float(ratio) * factor
return newdata
示例9: __init__
def __init__(self, Fs= 16000, TinSec= 10):
'''
Fs: 取樣頻率,預設值為 16000,
TinSec: 保存語音長度,預設值為 10 sec
'''
print('RyAudio use %s'%pa.get_portaudio_version_text())
self.Fs= Fs
self.spBufferSize= 1024
self.fftWindowSize= self.spBufferSize
self.aP= pa.PyAudio()
self.iS= pa.Stream(PA_manager= self.aP, input= True, rate= self.Fs, channels= 1, format= pa.paInt16)
self.oS= pa.Stream(PA_manager= self.aP, output= True, rate= self.Fs, channels= 1, format= pa.paInt16)
self.iTh= None
self.oTh= None
#self.sound= None
#self.soundTime= 0
self.gettingSound= True
self.playingSound= True
self.t= 0
self.b= None # byte string
self.x= None # ndarray
self.fft= None
self.f0= 0#None
self.en= 0#None
self.fm= 0#None # frequency mean
self.fv= 0#None # frequency var
self.fs= 0#None # frequency std
self.enP= 0#None # AllPass
self.enPL= 0#None # LowPass
self.enPH= 0#None # HighPass
self.entropy= 0#None
self.frameI= 0
#self.frameN= self.spBufferSize/4 #1024/4 = 256
self.TinSec= TinSec #10 # sec
self.frameN= self.Fs*self.TinSec/self.spBufferSize #self.spBufferSize/4 #1024/4 = 256
self.frameN= int(self.frameN)
self.specgram= pl.random([self.frameN, self.spBufferSize/2])
self.xBuf= pl.random([self.frameN, self.spBufferSize])
示例10: mc_counts2samples
def mc_counts2samples( self, counts ) :
values=[]
bin=-180
for value in counts:
for i in arange(value) :
values.append(bin+random()*self.step)
bin += self.step
return array(values)
示例11: sqr_cplx
def sqr_cplx(z):
"""
Fonction racine d'un complexe. Prend aléatoirement la racine
positive ou négative
"""
r, theta = cart2pol(z)
r = pl.sqrt(r)
theta = theta/2 + int(2*pl.random())*pl.pi
return pol2cart(r, theta)
示例12: next
def next(self):
Tnext = ((self.Konstant * self.t1) * 2) - self.t0
if len(self.values) % 100 > 70:
self.values.append(pylab.random() * 2 - 1)
else:
self.values.append(Tnext)
self.t0 = self.t1
self.t1 = Tnext
return self.values[-1]
示例13: markov_trajectory
def markov_trajectory(self,distribution,state=None):
if state == None :
state = self.start_point(distribution)
trj = []
for i in range(self.frames):
state = self.markov_step(state,distribution)
angle = self.mod2pi((state+random())*self.step-180)
trj.append(angle)
return array(trj)
示例14: random_euler_angles
def random_euler_angles():
r1,r2,r3 = pylab.random(3)
q1 = pylab.sqrt(1.0-r1)*pylab.sin(2.0*pylab.pi*r2)
q2 = pylab.sqrt(1.0-r1)*pylab.cos(2.0*pylab.pi*r2)
q3 = pylab.sqrt(r1)*pylab.sin(2.0*pylab.pi*r3)
q4 = pylab.sqrt(r1)*pylab.cos(2.0*pylab.pi*r3)
phi = math.atan2(2.0*(q1*q2+q3*q4), 1.0-2.0*(q2**2+q3**2))
theta = math.asin(2.0*(q1*q3-q4*q2))
psi = math.atan2(2.0*(q1*q4+q2*q3), 1.0-2.0*(q3**2+q4**2))
return [phi,theta,psi]
示例15: initialize
def initialize(self):
self.state = pylab.zeros([self.n, self.n])
for x in xrange(self.n):
for y in xrange(self.n):
self.state[x, y] = 1 if pylab.random() < self.init_p else 0
self.state[self.n/2, self.n/2] = 2
self.next_state = pylab.zeros([self.n, self.n])
for x in xrange(self.n):
for y in xrange(self.n):
if self.state[x, y] == 1 or self.state[x, y] == 2:
self.total_num_trees += 1