本文整理汇总了Python中pylab.quiver函数的典型用法代码示例。如果您正苦于以下问题:Python quiver函数的具体用法?Python quiver怎么用?Python quiver使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了quiver函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: transform
def transform(W):
global N
print W[20]
t = 20
MM = N
N = 356
#bakk = W[t]
arr = np.zeros((N+1,N+1)).astype(np.float32)
# interpolation in order to keep baking in 32 array elements (for stability)
bakk = interp1d(range(MM+1), W[t], kind='cubic')
for i in range(-N/2,N/2+1):
for j in range(-N/2,N/2+1):
i2 = i
j2 = j
r = np.sqrt(i2*i2+j2*j2).astype(np.float32)
if(r < N and r >= 0):
arr[N/2-i,N/2-j] = bakk((N-r)*MM/N)
if(False):
I2 = Image.frombuffer('L',(N+1,N+1), (arr).astype(np.uint8),'raw','L',0,1)
imgplot = plt.imshow(I2)
plt.colorbar()
gx, gy = np.gradient(arr)
pylab.quiver(gx,gy)
pylab.show()
plt.show()
#print "Saving Image res.png..."
#I2.save('res.png')
return arr
示例2: getvectorfield
def getvectorfield( fitsa, fitsb, graph=False):
mysex = sexparser.sextractorresult(fitsa)
mysex.loaddata()
testsex = sexparser.sextractorresult(fitsb)
testsex.loaddata()
flann = pyflann.FLANN()
dataset = buildvec( mysex.objects["X_IMAGE"], mysex.objects["Y_IMAGE"] )
testset = buildvec( testsex.objects["X_IMAGE"], testsex.objects["Y_IMAGE"] )
ids, dists = flann.nn(dataset,testset,1,algorithm="linear")
f=numpy.vectorize( lambda x: x > 0 and x < 100 )
cond = numpy.where( f(dists) )
if graph:
pylab.hist(dists,bins=100,range=(0,10),histtype="bar")
pylab.hist(dists[cond],bins=100,range=(0,10))
pylab.show()
diffvec = dataset[ids[cond]]-testset[cond]
x,y=numpy.transpose(testset)
q,u=numpy.transpose(diffvec)
if graph:
pylab.quiver(x,y,q,u)
pylab.xlim(0,2048)
pylab.ylim(0,2048)
pylab.show()
return q.mean(), u.mean(), q.std(), u.std()
示例3: draw_MAP_residuals
def draw_MAP_residuals(objectsA, objectsB, P, scaled='no'):
from pyBA.distortion import compute_displacements, compute_residual
from numpy import array
# Compute displacements between frames for tie objects
xobs, yobs, vxobs, vyobs, sxobs, syobs = compute_displacements(objectsA, objectsB)
# Compute residual
dx, dy = compute_residual(objectsA, objectsB, P)
# Draw residuals
fig = figure(figsize=(16,16))
ax = fig.add_subplot(111, aspect='equal')
if scaled is 'yes':
# Allow relative scaling of arrows
quiver(xobs,yobs,dx,dy)
else:
# Show residuals in absolute size (often very tiny), with uncertainties
# Also plot error ellipses
ellipses = array([ Bivarg( mu = array([xobs[i] + dx[i], yobs[i] + dy[i]]),
sigma = objectsA[i].sigma + objectsB[i].sigma )
for i in range(len(objectsA)) ])
draw_objects(ellipses, replot='yes')
# Residuals
quiver(xobs,yobs,dx,dy,color='r', angles='xy', scale_units='xy', scale=1)
ax.autoscale(enable=None, axis='both', tight=True)
show()
示例4: plotSurface
def plotSurface(pt, td, winds, map, stride, title, file_name):
pylab.figure()
pylab.axes((0.05, 0.025, 0.9, 0.9))
u, v = winds
nx, ny = pt.shape
gs_x, gs_y = goshen_3km_gs
xs, ys = np.meshgrid(gs_x * np.arange(nx), gs_y * np.arange(ny))
data_thin = tuple([ slice(None, None, stride) ] * 2)
td_cmap = matplotlib.cm.get_cmap('Greens')
td_cmap.set_under('#ffffff')
pylab.contourf(xs, ys, td, levels=np.arange(40, 80, 5), cmap=td_cmap)
pylab.colorbar()
CS = pylab.contour(xs, ys, pt, colors='r', linestyles='-', linewidths=1.5, levels=np.arange(288, 324, 4))
pylab.clabel(CS, inline_spacing=0, fmt="%d K", fontsize='x-small')
pylab.quiver(xs[data_thin], ys[data_thin], u[data_thin], v[data_thin])
drawPolitical(map, scale_len=75)
pylab.suptitle(title)
pylab.savefig(file_name)
pylab.close()
return
示例5: vectorField
def vectorField(self,plt,X,Y,U,V,title):
if self.plotFields:
# Create mask corresponding to 0 fluid velocity values inside obstructions
M = zeros([X.quiverLength,Y.quiverLength],dtype='bool')
M = (U.quiver == 0)
# Mask the obstructions in the fluid velocity vector field
U.quiver = ma.masked_array(U.quiver,mask=M)
V.quiver = ma.masked_array(V.quiver,mask=M)
# Build and scale the plot
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_ylim(Y.minValue, Y.maxValue)
ax.set_xlim(X.minValue, X.maxValue)
pos1 = ax.get_position()
pos2 = [pos1.x0+((pos1.width - (pos1.width*self.scaleX))*.5), pos1.y0+((pos1.height - (pos1.height*self.scaleY))*.5), pos1.width*self.scaleX, pos1.height*self.scaleY]
ax.set_position(pos2)
title = title + ' Vector Field'
plt.title(title)
plt.xlabel("X [m]")
plt.ylabel("Y [m]")
plt.grid()
quiver(X.quiver,Y.quiver,U.quiver,V.quiver)
示例6: plot_stiffness_field
def plot_stiffness_field(k_cart,plottitle=''):
n_points = 20
ang_step = math.radians(360)/n_points
x_list = []
y_list = []
u_list = []
v_list = []
k_cart = k_cart[0:2,0:2]
for i in range(n_points):
ang = i*ang_step
for r in [0.5,1.,1.5]:
dx = r*math.cos(ang)
dy = r*math.sin(ang)
dtau = -k_cart*np.matrix([dx,dy]).T
x_list.append(dx)
y_list.append(dy)
u_list.append(dtau[0,0])
v_list.append(dtau[1,0])
pl.figure()
# mpu.plot_circle(0,0,1.0,0.,math.radians(360))
mpu.plot_radii(0,0,1.5,0.,math.radians(360),interval=ang_step,color='r')
pl.quiver(x_list,y_list,u_list,v_list,width=0.002,color='k',scale=None)
pl.axis('equal')
pl.title(plottitle)
示例7: main
def main():
# Create the grid
x = arange(-100, 101)
y = arange(-100, 101)
# Create the meshgrid
Y, X = meshgrid(x, y)
A = 1
B = 2
V = 6*pi / 201
W = 4*pi / 201
F = A*sin(V*X) + B*cos(W*Y)
Fx = V*A*cos(V*X)
Fy = W*B*-sin(W*Y)
# Show the images
show_image(F)
show_image(Fx)
show_image(Fy)
# Create the grid for the quivers
xs = arange(-100, 101, 10)
ys = arange(-100, 101, 10)
# Here we determine the direction of the quivers
Ys, Xs = meshgrid(ys, xs)
FFx = V*A*cos(V*Xs)
FFy = W*B*-sin(W*Ys)
# Draw the quivers and the image
clf()
imshow(F, cmap=cm.gray, extent=(-100, 100, -100, 100))
quiver(ys, xs, -FFy, FFx, color='red')
show()
示例8: doSubplot
def doSubplot(multiplier=1.0, layout=(-1, -1)):
if time_sec < 16200:
xs, ys = xs_1, ys_1
domain_bounds = bounds_1sthalf
grid = grid_1
else:
xs, ys = xs_2, ys_2
domain_bounds = bounds_2ndhalf
grid = grid_2
try:
mo = ARPSModelObsFile("%s/%s/KCYS%03dan%06d" % (base_path, exp, min_ens, time_sec))
except AssertionError:
mo = ARPSModelObsFile("%s/%s/KCYS%03dan%06d" % (base_path, exp, min_ens, time_sec), mpi_config=(2, 12))
except:
print "Can't load reflectivity ..."
mo = {'Z':np.zeros((1, 255, 255), dtype=np.float32)}
pylab.contour(xs, ys, wind[exp]['w'][wdt][domain_bounds], levels=np.arange(2, 102, 2), styles='-', colors='k')
pylab.contour(xs, ys, wind[exp]['w'][wdt][domain_bounds], levels=np.arange(-100, 0, 2), styles='--', colors='k')
pylab.quiver(xs[thin], ys[thin], wind[exp]['u'][wdt][domain_bounds][thin], wind[exp]['v'][wdt][domain_bounds][thin])
pylab.contourf(xs, ys, mo['Z'][0][domain_bounds], levels=np.arange(10, 85, 5), cmap=NWSRef, zorder=-10)
grid.drawPolitical(scale_len=10)
row, col = layout
if col == 1:
pylab.text(-0.075, 0.5, exp_names[exp], transform=pylab.gca().transAxes, rotation=90, ha='center', va='center', size=12 * multiplier)
示例9: main
def main(argv=None):
if argv is None:
argv=sys.argv
iresfile=argv[1];
try:
ct=float(argv[2]);
except:
ct=0.0
ires=adore.res2dict(iresfile);
A=ires['fine_coreg']['results'];
A=A[A[:,5]>ct,:]
az=int(ires['fine_coreg']['Initial offsets'].split(',')[0]);
rg=int(ires['fine_coreg']['Initial offsets'].split(',')[1]);
#figure1
pylab.figure()
pylab.title('Fine Correlation Results')
pylab.quiver(A[:,2], A[:,1], A[:,4], A[:,3], A[:,5]);
pylab.colorbar()
#figure2
pylab.figure()
pylab.title('Fine Correlation Deviations')
pylab.quiver(A[:,2], A[:,1], A[:,4]-rg, A[:,3]-az, A[:,5]);
pylab.colorbar()
pylab.show()
示例10: quiver_image
def quiver_image(X, Y, U, V):
pylab.figure(1)
pylab.quiver(X, Y, U, V)
canvas = pylab.get_current_fig_manager().canvas
canvas.draw()
pil_image = Image.fromstring('RGB', canvas.get_width_height(), canvas.tostring_rgb())
return pil_image
示例11: whiskerplot
def whiskerplot(shear,dRA=1.,dDEC=1.,scale=5, combine=1, offset=(0,0) ):
if combine>1:
s = (combine*int(shear.shape[0]/combine),
combine*int(shear.shape[1]/combine))
shear = shear[0:s[0]:combine, 0:s[1]:combine] \
+ shear[1:s[0]:combine, 0:s[1]:combine] \
+ shear[0:s[0]:combine, 1:s[1]:combine] \
+ shear[1:s[0]:combine, 1:s[1]:combine]
shear *= 0.25
dRA *= combine
dDEC *= combine
theta = shear**0.5
RA = offset[0] + np.arange(shear.shape[0])*dRA
DEC = offset[1] + np.arange(shear.shape[1])*dDEC
pylab.quiver(RA,DEC,
theta.real.T,theta.imag.T,
pivot = 'middle',
headwidth = 0,
headlength = 0,
headaxislength = 0,
scale=scale)
pylab.xlim(0,shear.shape[0]*dRA)
pylab.ylim(0,shear.shape[1]*dDEC)
pylab.xlabel('RA (arcmin)')
pylab.ylabel('DEC (arcmin)')
示例12: ode_slopes_2states
def ode_slopes_2states(func, radii_list, theta_deg_list, time_list):
"""
Plot field of arrows indicating derivatives of the state
:param func:
:param radii_list:
:param theta_deg_list:
:param time_list:
:return:
"""
# to convert angle unit from degree to radian
deg2rad = np.pi / 180
# list of angles in radian
theta_rad_list = tuple([(theta_deg * deg2rad) for theta_deg in theta_deg_list])
# radii x angles mesh grid
radii_mesh, theta_rad_mesh = np.meshgrid(radii_list, theta_rad_list)
# polar coordinate to cartesian coordinate
y = radii_mesh * np.cos(theta_rad_mesh), radii_mesh * np.sin(theta_rad_mesh)
# derivatives of state at each point
y_dot = func(y, time_list)
# color
color_mesh = np.sqrt(y_dot[0] * y_dot[0] + y_dot[1] * y_dot[1])
# 1
pylab.figure()
pylab.quiver(y[0], y[1], y_dot[0], y_dot[1], color_mesh, angles='xy')
l, r, b, t = pylab.axis()
x_span, y2_mesh = r - l, t - b
pylab.axis([l - 0.05 * x_span, r + 0.05 * x_span, b - 0.05 * y2_mesh, t + 0.05 * y2_mesh])
pylab.axis('equal')
pylab.grid()
示例13: plotForceField
def plotForceField(mouse,points,delta=0.,cm=0.):
N=51
sz=12
rng=np.linspace(-sz,sz,N)
R=np.zeros((N,N,2))
for x in range(rng.size):
for y in range(rng.size):
offset=np.array([np.cos(points[:,2]),np.sin(points[:,2])]).T
res=computeForce([rng[x],rng[y]],points=points[:,:2]+delta*offset,
maxmag=0.1,circlemass=cm)
R[x,y,:]=res#np.linalg.norm(res)
plt.cla()
c=plt.Circle((0,0),radius=11.75,fill=False)
plt.gca().add_patch(c)
plt.plot(points[:,0],points[:,1],'ks',ms=8)
plt.plot(mouse[0],mouse[1],'go',ms=8)
plt.xlim([-12,12])
plt.ylim([-12,12])
plt.gca().set_aspect(1)
#plt.pcolormesh(rng,rng,R.T,vmax=0.1)
#R=np.square(R)
plt.quiver(rng,rng,R[:,:,0].T,R[:,:,1].T,np.linalg.norm(R,axis=2).T,scale=3)
#plt.pcolormesh(rng,rng,np.linalg.norm(R,axis=2).T)
loc,minforce,ms=findNearestLocalMin(points[:,:2],start=np.copy(mouse[:2]),
circlemass=cm)
plt.plot(loc[0],loc[1],'bd',ms=8)
plt.grid(b=False)
ax=plt.gca()
ax.spines['top'].set_visible(True)
ax.spines['right'].set_visible(True)
ax.set_xticklabels([]);ax.set_yticklabels([])
示例14: main
def main():
x0, x1 = -0.5, 0.5
y0, y1 = -0.5, 0.5
h = .125
nu = 1e3
dt = 0.01
t0 = 0.01
plot_rows, plot_cols = 3, 3
plot_every = 10
x, y = init_position.triangular(x0, x1, y0, y1, cell_size=h)
# initial vorticity and circulation
vort = problems.lamb_oseen.vorticity(x, y, t0, nu=nu)
circ = h**2 * vort
# particle colors
from itertools import cycle, izip as zip
colors = ('#FF0000 #00FF00 #0000FF #FFFF00 #FF00FF #00FFFF '
'#660000 #006600 #000066 #666600 #660066 #006666 '
).split()
colors = [c for (c, _) in zip(cycle(colors), x)]
t = t0
iteration = 0
plot_count = 0
while True:
plot_now = (iteration % plot_every == 0)
if plot_now:
plot_count += 1
pylab.subplot(plot_rows, plot_cols, plot_count,
autoscale_on=False,
xlim=(1.2 * x0, 1.2 * x1),
ylim=(1.2 * y0, 1.2 * y1))
pylab.scatter(x, y, s=2, c=colors, edgecolors='none')
pylab.grid(True)
u, v = vm.eval_velocity(x, y, circ)
#pylab.quiver(x[::10], y[::10], u[::10], v[::10])
if plot_now:
pylab.quiver(x, y, u, v, color=colors)
pylab.title('$t = %.2f$' % t)
# convect
x += u * dt
y += v * dt
iteration += 1
t += dt
if plot_count == plot_rows * plot_cols:
break
pylab.suptitle(ur'Lamb Oseen vortex, $\nu = %.3f$' % nu)
pylab.show()
示例15: OnCalcShiftmap
def OnCalcShiftmap(self, event):
from PYME.Analysis import twoColour, twoColourPlot
import pylab
masterChan = self.chChannel.GetSelection()
master = self.objFitRes[masterChan]
x0 = master['fitResults']['x0']
y0 = master['fitResults']['y0']
err_x0 = master['fitError']['x0']
err_y0 = master['fitError']['y0']
z0 = master['fitResults']['z0']
wxy = master['fitResults']['wxy']
wxy_bead = float(self.tBeadWXY.GetValue())
mask = numpy.abs(wxy - wxy_bead) < (.25*wxy_bead)
self.shiftfields ={}
pylab.figure()
nchans = self.image.data.shape[3]
ch_i = 1
for ch in range(nchans):
if not ch == masterChan:
res = self.objFitRes[ch]
x = res['fitResults']['x0']
y = res['fitResults']['y0']
z = res['fitResults']['z0']
err_x = numpy.sqrt(res['fitError']['x0']**2 + err_x0**2)
err_y = numpy.sqrt(res['fitError']['y0']**2 + err_y0**2)
dx = x - x0
dy = y - y0
dz = z - z0
print(('dz:', numpy.median(dz[mask])))
spx, spy = twoColour.genShiftVectorFieldLinear(x[mask], y[mask], dx[mask], dy[mask], err_x[mask], err_y[mask])
self.shiftfields[ch] = (spx, spy, numpy.median(dz[mask]))
#twoColourPlot.PlotShiftField2(spx, spy, self.image.data.shape[:2])
pylab.subplot(1,nchans -1, ch_i)
ch_i += 1
twoColourPlot.PlotShiftResidualsS(x[mask], y[mask], dx[mask], dy[mask], spx, spy)
pylab.figure()
X, Y = numpy.meshgrid(numpy.linspace(0., 70.*self.image.data.shape[0], 20), numpy.linspace(0., 70.*self.image.data.shape[1], 20))
X = X.ravel()
Y = Y.ravel()
for k in self.shiftfields.keys():
spx, spy, dz = self.shiftfields[k]
pylab.quiver(X, Y, spx.ev(X, Y), spy.ev(X, Y), color=['r', 'g', 'b'][k], scale=2e3)
pylab.axis('equal')