本文整理汇总了Python中pylab.polyval函数的典型用法代码示例。如果您正苦于以下问题:Python polyval函数的具体用法?Python polyval怎么用?Python polyval使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了polyval函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotPopulations
def plotPopulations(numSteps):
""" Plots populations of Foxes & Rabbits for given timesteps. """
rab_pop, fox_pop = runSimulation(numSteps)
# for i in range(len(rab_pop)):
# print(rab_pop[i], fox_pop[i])
r_style = 'bo' # blue - continuous line
f_style = 'ro' # red - continuous line
pylab.figure('Fox / Rabit Populations')
pylab.plot(rab_pop, r_style, label='Rabbit Pop')
pylab.plot(fox_pop, f_style, label='Fox Pop')
pylab.title('Fox / Rabit Populations: {} timesteps'.format(numSteps))
pylab.xlabel('Time Steps')
pylab.ylabel('Population')
pylab.legend(loc='best')
degree = 2
rab_coeff = pylab.polyfit(range(len(rab_pop)), rab_pop, degree)
pylab.plot(pylab.polyval(rab_coeff, range(len(rab_pop))), 'b-')
fox_coeff = pylab.polyfit(range(len(fox_pop)), fox_pop, degree)
pylab.plot(pylab.polyval(fox_coeff, range(len(fox_pop))), 'r-')
pylab.show()
示例2: getApices
def getApices(y):
"""
returns the time (in frames) and position of initial and final apex
height from a given trajectory y, which are obtained by fitting a cubic
spline
==========
parameter:
==========
y : *array* (1D)
the trajectory. Should ideally start ~1 frame before an apex and end ~1
frame behind an apex
========
returns:
========
[x0, xF], [y0, yF] : location (in frames) and value of the first and final
apices
"""
# the math behind here is: fitting a 2nd order polynomial and finding
# the root of its derivative. Here, only the results are applied, that's
# why it appears like "magic" numbers
c = dot(array([[.5, -1, .5], [-1.5, 2., -.5], [1., 0., 0.]]), y[:3])
x0 = -1. * c[1] / (2. * c[0])
y0 = polyval(c, x0)
c = dot(array([[.5, -1, .5], [-1.5, 2., -.5], [1., 0., 0.]]), y[-3:])
xF = -1. * c[1] / (2. * c[0])
yF = polyval(c, xF)
xF += len(y) - 3
return [x0, xF], [y0, yF]
示例3: runSimulation2
def runSimulation2(numSteps):
"""
Runs the simulation for `numSteps` time steps.
Returns a tuple of two lists: (rabbit_populations, fox_populations)
where rabbit_populations is a record of the rabbit population at the
END of each time step, and fox_populations is a record of the fox population
at the END of each time step.
Both lists should be `numSteps` items long.
"""
rabbitPopulationOverTime = []
foxPopulationOverTime = []
for step in range(numSteps):
rabbitGrowth()
rabbitPopulationOverTime.append(CURRENTRABBITPOP)
foxGrowth()
foxPopulationOverTime.append(CURRENTFOXPOP)
print "CURRENTRABBITPOP", CURRENTRABBITPOP, rabbitPopulationOverTime
print "CURRENTFOXPOP", CURRENTFOXPOP, foxPopulationOverTime
pylab.plot(range(numSteps), rabbitPopulationOverTime, '-g', label='Rabbit population')
pylab.plot(range(numSteps), foxPopulationOverTime, '-o', label='Fox population')
rabbit_coeff = pylab.polyfit(range(len(rabbitPopulationOverTime)), rabbitPopulationOverTime, 2)
pylab.plot(pylab.polyval(rabbit_coeff, range(len(rabbitPopulationOverTime))))
fox_coeff = pylab.polyfit(range(len(foxPopulationOverTime)), foxPopulationOverTime, 2)
pylab.plot(pylab.polyval(fox_coeff, range(len(rabbitPopulationOverTime))))
pylab.title('Fox and rabbit population in the wood')
xlabel = "Plot for simulation of {} steps".format(numSteps)
pylab.xlabel(xlabel)
pylab.ylabel('Current fox and rabbit population')
pylab.legend(loc='upper right')
pylab.tight_layout()
pylab.show()
pylab.clf()
示例4: plotFittingCurve
def plotFittingCurve(rabbits, foxes):
r_coeff = pylab.polyfit(range(len(rabbits)), rabbits, 2)
f_coeff = pylab.polyfit(range(len(foxes)), foxes, 2)
pylab.plot(pylab.polyval(r_coeff, range(len(rabbits))), label = "Rabbits Curve")
pylab.plot(pylab.polyval(f_coeff, range(len(foxes))), label = "Foxes Curve")
pylab.legend()
pylab.show()
示例5: runSimulation
def runSimulation(numSteps):
"""
Runs the simulation for `numSteps` time steps.
Returns a tuple of two lists: (rabbit_populations, fox_populations)
where rabbit_populations is a record of the rabbit population at the
END of each time step, and fox_populations is a record of the fox population
at the END of each time step.
Both lists should be `numSteps` items long.
"""
rabbitPop = []
foxPop = []
for i in range(numSteps):
rabbitGrowth()
foxGrowth()
rabbitPop.append(CURRENTRABBITPOP)
foxPop.append(CURRENTFOXPOP)
#return (rabbitPop,foxPop)
pylab.plot(rabbitPop)
pylab.plot(foxPop)
pylab.show()
rabbitPopulationOverTime = rabbitPop[:]
coeff = pylab.polyfit(range(len(rabbitPopulationOverTime)), rabbitPopulationOverTime, 2)
pylab.plot(pylab.polyval(coeff, range(len(rabbitPopulationOverTime))))
pylab.show()
rabbitPopulationOverTime = foxPop[:]
coeff = pylab.polyfit(range(len(rabbitPopulationOverTime)), rabbitPopulationOverTime, 2)
pylab.plot(pylab.polyval(coeff, range(len(rabbitPopulationOverTime))))
pylab.show()
示例6: equil
def equil():
eq_m = -0.0001
rise_rate = 0.0125
mag = 20
ts = linspace(0, 400, 500)
f = F(ts, mag=mag)
# g = eq_m * f
g = G(ts, f, rate=eq_m)
b = rise_rate * ts
fg = f + g + b
plot(ts, f, label='F Equilibration')
plot(ts, g, label='G Consumption')
plot(ts, fg, label='F-G (Sniff Evo)')
rf, rollover_F, vi_F = calc_optimal_eqtime(ts, f)
rfg, rollover_FG, vi_FG = calc_optimal_eqtime(ts, fg)
m = 2 * eq_m * mag
axvline(x=rollover_F, ls='--', color='blue')
axvline(x=rollover_FG, ls='--', color='red')
idx = list(ts).index(rollover_F)
b = fg[idx] - m * rollover_F
evo = polyval((m, b), ts)
plot(ts, evo, ls='-.', color='blue', label='Static Evo. A')
# ee = where(evo > mag)[0]
# to_F = ts[max(ee)]
# print 'F', rollover_F, b, to_F
b = vi_FG - m * rollover_FG
evo = polyval((m, b), ts)
plot(ts, evo, ls='-.', color='red', label='Static Evo. B')
print polyval((m, b), 200)
ee = where(evo > mag)[0]
# to_FG = ts[max(ee)]
# print 'FG', rollover_FG, b, to_FG
# axvline(x=to_FG, ls='-', color='red')
# axvline(x=to_F, ls='-', color='blue')
axhline(y=mag, ls='-', color='black')
# plot([ti], [mag], 'bo')
legend(loc=0)
# ylim(2980, 3020)
ylim(18, 21)
xlim(0, 20)
ylabel('Intensity')
xlabel('t (s)')
# fig = gcf()
# fig.text(0.1, 0.01, 'asdfasfasfsadfsdaf')
show()
示例7: make_joining_whisker
def make_joining_whisker(px,py,dist,lthick,lscore,rthick,rscore):
w = Whisker_Seg()
tt = linspace(0,1,round(dist))
w.x = polyval(px,tt).astype(float32)
w.y = polyval(py,tt).astype(float32)
w.thick = polyval( [rthick-lthick,lthick], tt ).astype(float32)
w.scores = polyval( [rscore-lscore,lscore], tt ).astype(float32)
return w
示例8: plotFitSimulation
def plotFitSimulation(numSteps):
ans = runSimulation(numSteps)
rabbitCoeff = pylab.polyfit(range(numSteps), ans[0], 2)
foxCoeff = pylab.polyfit(range(numSteps), ans[1], 2)
print rabbitCoeff, foxCoeff
pylab.plot(pylab.polyval(rabbitCoeff, range(numSteps)), 'r')
pylab.plot(pylab.polyval(foxCoeff, range(numSteps)), 'g')
pylab.title("polyfit result")
pylab.show()
示例9: compute_join_curvature
def compute_join_curvature( px, py ):
from scipy.integrate import quad
xp = polyder( px, 1 )
xpp = polyder( px, 2 )
yp = polyder( py, 1 )
ypp = polyder( py, 2 )
pn = polyadd( polymul( xp, ypp ), polymul( yp, xpp )) #numerator
pd = polyadd( polymul( xp, xp ) , polymul( yp, yp ) ) #denominator
integrand = lambda t: fabs(polyval( pn, t )/( polyval( pd, t )**(1.5)) )
return quad(integrand, 0, 1) [0]
示例10: plotSimulation
def plotSimulation():
rabbits, foxes = runSimulation(200)
pylab.plot(rabbits, label='Rabbits')
pylab.plot(foxes, label='Foxes')
a, b, c = pylab.polyfit(range(len(rabbits)), rabbits, 2)
pylab.plot(pylab.polyval([a, b, c], range(len(rabbits))), label='Rabbits')
d, e, f = pylab.polyfit(range(len(foxes)), foxes, 2)
pylab.plot(pylab.polyval([d, e, f], range(len(foxes))), label='Foxes')
pylab.grid()
pylab.legend()
pylab.show()
示例11: plotLineFit
def plotLineFit():
rabbitPops, foxPops = runSimulation(200)
steps = [n for n in range(1, 201)]
coeff = pylab.polyfit(range(len(rabbitPops)), rabbitPops, 2)
pylab.plot(pylab.polyval(coeff, range(len(rabbitPops))))
coeff = pylab.polyfit(range(len(foxPops)), foxPops, 2)
pylab.plot(pylab.polyval(coeff, range(len(foxPops))))
pylab.title('Fox vs. Rabbit')
pylab.legend(('Rabbit Pop', 'Fox Pop'))
pylab.xlabel('Step')
pylab.ylabel('Population')
pylab.show()
示例12: createPlots
def createPlots(data):
x = data[0]
y = data[1]
a,b,c = polyFit(x, y, 2)
x = pylab.arange(201)
y = a*x**2 + b*x + c
print pylab.polyval((a,b,c), 200)
pylab.plot(x, y)
pylab.show()
示例13: plot
def plot(rabbits, foxes):
N = len(rabbits)
pylab.plot(range(N), rabbits, 'go', label = "rabbit pop")
pylab.plot(range(N), foxes, 'ro', label = "foxes pop")
rab_coeff = pylab.polyfit(range(N), rabbits, 2)
fox_coeff = pylab.polyfit(range(N), foxes, 2)
pylab.plot(pylab.polyval(rab_coeff, range(N)), 'g-', label = "rabbit polyfit")
pylab.plot(pylab.polyval(fox_coeff, range(N)), 'r-', label = "fox polyfit")
pylab.xlabel("Time")
pylab.ylabel("Population")
pylab.title("Dynamics of Rabbit and Fox Population")
pylab.legend()
pylab.show()
示例14: ddPsi
def ddPsi(a,s):
'''
# second derivative of polynomial
# a = polynomical constants (needs to be in list/array form so len() command works)
# s = position along polynomial (needs to be in list/array form so len() command works)
'''
n = len(a) # number of variables in polynimal
a1 = a[:-1]*(pl.arange(n-1,0,-1)+1)*pl.arange(n-1,0,-1)
a2 = a*(pl.arange(n-1,-1,-1)+2)*(pl.arange(n-1,-1,-1)+1)
psi = pl.polyval(a1,s) - pl.polyval(a2,s)
return psi
示例15: plotSim
def plotSim():
numSim = 400
rabbit_populations, fox_populations = runSimulation(numSim)
pylab.figure(1)
pylab.plot(range(numSim), rabbit_populations, label = "rabit")
pylab.plot(range(numSim), fox_populations, label = "fox")
# pylab.figure(2)
coeff = pylab.polyfit(range(numSim), rabbit_populations, 2)
pylab.plot(pylab.polyval(coeff, range(numSim)), label = "rabit fitting")
coeff = pylab.polyfit(range(numSim), fox_populations, 2)
pylab.plot(pylab.polyval(coeff, range(numSim)), label = "fox fitting")
pylab.legend()
pylab.show()