本文整理汇总了Python中pylab.plot函数的典型用法代码示例。如果您正苦于以下问题:Python plot函数的具体用法?Python plot怎么用?Python plot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了plot函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_tracks
def plot_tracks(src, fakewcs, spa=None, **kwargs):
# NOTE -- MAGIC 61 = monthly; this is ASSUMEd below.
tt = np.linspace(2010., 2015., 61)
t0 = TAITime(None, mjd=TAITime.mjd2k + 365.25*10)
#rd0 = src.getPositionAtTime(t0)
#print 'rd0:', rd0
xx,yy = [],[]
rr,dd = [],[]
for t in tt:
#print 'Time', t
rd = src.getPositionAtTime(t0 + (t - 2010.)*365.25*24.*3600.)
ra,dec = rd.ra, rd.dec
rr.append(ra)
dd.append(dec)
ok,x,y = fakewcs.radec2pixelxy(ra,dec)
xx.append(x - 1.)
yy.append(y - 1.)
if spa is None:
spa = [None,None,None]
for rows,cols,sub in spa:
if sub is not None:
plt.subplot(rows,cols,sub)
ax = plt.axis()
plt.plot(xx, yy, 'k-', **kwargs)
plt.axis(ax)
return rr,dd,tt
示例2: testTelescope
def testTelescope(self):
import matplotlib
matplotlib.use('AGG')
import matplotlib.mlab as ml
import pylab as pl
import time
w0 = 8.0
k = 2*np.pi/3.0
gb = GaussianBeam(w0, k)
lens = ThinLens(150, 150)
gb2 = lens*gb
self.assertAlmostEqual(gb2._z0, gb._z0 + 2*150.0)
lens2 = ThinLens(300, 600)
gb3 = lens2*gb2
self.assertAlmostEqual(gb3._z0, gb2._z0 + 2*300.0)
self.assertAlmostEqual(gb._w0, gb3._w0/2.0)
z = np.arange(0, 150)
z2 = np.arange(150, 600)
z3 = np.arange(600, 900)
pl.plot(z, gb.w(z, k), z2, gb2.w(z2, k), z3, gb3.w(z3, k))
pl.grid()
pl.xlabel('z')
pl.ylabel('w')
pl.savefig('testTelescope1.png')
time.sleep(0.1)
pl.close('all')
示例3: plot_xc
def plot_xc(t_years):
"""Plot the location of the calving front."""
x = x_c(t_years * secpera) / 1000.0 # convert to km
_, _, y_min, y_max = axis()
hold(True)
plot([x, x], [y_min, y_max], '--g')
示例4: check_vpd_ks2_astrometry
def check_vpd_ks2_astrometry():
"""
Check the VPD and quiver plots for our KS2-extracted, re-transformed astrometry.
"""
catFile = workDir + '20.KS2_PMA/wd1_catalog.fits'
tab = atpy.Table(catFile)
good = (tab.xe_160 < 0.05) & (tab.ye_160 < 0.05) & \
(tab.xe_814 < 0.05) & (tab.ye_814 < 0.05) & \
(tab.me_814 < 0.05) & (tab.me_160 < 0.05)
tab2 = tab.where(good)
dx = (tab2.x_160 - tab2.x_814) * ast.scale['WFC'] * 1e3
dy = (tab2.y_160 - tab2.y_814) * ast.scale['WFC'] * 1e3
py.clf()
q = py.quiver(tab2.x_814, tab2.y_814, dx, dy, scale=5e2)
py.quiverkey(q, 0.95, 0.85, 5, '5 mas', color='red', labelcolor='red')
py.savefig(workDir + '20.KS2_PMA/vec_diffs_ks2_all.png')
py.clf()
py.plot(dy, dx, 'k.', ms=2)
lim = 30
py.axis([-lim, lim, -lim, lim])
py.xlabel('Y Proper Motion (mas)')
py.ylabel('X Proper Motion (mas)')
py.savefig(workDir + '20.KS2_PMA/vpd_ks2_all.png')
idx = np.where((np.abs(dx) < 10) & (np.abs(dy) < 10))[0]
print('Cluster Members (within dx < 10 mas and dy < 10 mas)')
print((' dx = {dx:6.2f} +/- {dxe:6.2f} mas'.format(dx=dx[idx].mean(),
dxe=dx[idx].std())))
print((' dy = {dy:6.2f} +/- {dye:6.2f} mas'.format(dy=dy[idx].mean(),
dye=dy[idx].std())))
示例5: plot_data
def plot_data(x,y,Amp,freq):
"""
Plot the actual data point x,y along with the fit Amp*sin(freq*x)
"""
plb.plot(x,y,'b',linestyle=':')
y_fit = Amp*np.sin(freq*x)
plb.plot(x,y_fit,'r')
示例6: plot_matches
def plot_matches(self, name, show_below = True, match_maximum = None):
""" 対応点を線で結んで画像を表示する
入力: im1,im2(配列形式の画像)、locs1,locs2(特徴点座標)
machescores(match()の出力)、
show_below(対応の下に画像を表示するならTrue)"""
im1 = self._image_1.get_array_image()
im2 = self._image_2.get_array_image()
self.appendimages()
im3 = self._append_image
if self._match_score is None:
self.match()
locs1 = self._image_1.get_shift_location()
locs2 = self._image_2.get_shift_location()
if show_below:
im3 = numpy.vstack((im3,im3))
pylab.figure(dpi=160)
pylab.gray()
pylab.imshow(im3, aspect = 'auto')
cols1 = im1.shape[1]
match_num = 0
for i,m in enumerate(self._match_score):
if m > 0 :
pylab.plot([locs1[i][0],locs2[m][0]+cols1], [locs1[i][1],locs2[m][1]], 'c')
match_num = match_num + 1
if match_maximum is not None and match_num >= match_maximum:
break
pylab.axis('off')
pylab.savefig(name, dpi=160)
示例7: createPlot
def createPlot(dataY, dataX, ticksX, annotations, axisY, axisX, dostep, doannotate):
if not ticksX:
ticksX = dataX
if dostep:
py.step(dataX, dataY, where='post', linestyle='-', label=axisY) # where=post steps after point
else:
py.plot(dataX, dataY, marker='o', ms=5.0, linestyle='-', label=axisY)
if annotations and doannotate:
for note, x, y in zip(annotations, dataX, dataY):
py.annotate(note, (x, y), xytext=(2,2), xycoords='data', textcoords='offset points')
py.xticks(np.arange(1, len(dataX)+1), ticksX, horizontalalignment='left', rotation=30)
leg = py.legend()
leg.draggable()
py.xlabel(axisX)
py.ylabel('time (s)')
# Set X axis tick labels as rungs
#print zip(dataX, dataY)
py.draw()
py.show()
return
示例8: drawPr
def drawPr(tp,fp,tot,show=True):
"""
draw the precision recall curve
"""
det=numpy.array(sorted(tp+fp))
atp=numpy.array(tp)
afp=numpy.array(fp)
#pylab.figure()
#pylab.clf()
rc=numpy.zeros(len(det))
pr=numpy.zeros(len(det))
#prc=0
#ppr=1
for i,p in enumerate(det):
pr[i]=float(numpy.sum(atp>=p))/numpy.sum(det>=p)
rc[i]=float(numpy.sum(atp>=p))/tot
#print pr,rc,p
ap=0
for c in numpy.linspace(0,1,num=11):
if len(pr[rc>=c])>0:
p=numpy.max(pr[rc>=c])
else:
p=0
ap=ap+p/11
if show:
pylab.plot(rc,pr,'-g')
pylab.title("AP=%.3f"%(ap))
pylab.xlabel("Recall")
pylab.ylabel("Precision")
pylab.grid()
pylab.show()
pylab.draw()
return rc,pr,ap
示例9: Doplots_monthly
def Doplots_monthly(mypathforResults,PlottingDF,variable_to_fill, Site_ID,units,item):
ANN_label=str(item+"_NN") #Do Monthly Plots
print "Doing MOnthly plot"
#t = arange(1, 54, 1)
NN_label='Fc'
Plottemp = PlottingDF[[NN_label,item]][PlottingDF['day_night']!=1]
#Plottemp = PlottingDF[[NN_label,item]].dropna(how='any')
figure(1)
pl.title('Nightime ANN v Tower by year-month for '+item+' at '+Site_ID)
try:
xdata1a=Plottemp[item].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1a=True
except:
plotxdata1a=False
try:
xdata1b=Plottemp[NN_label].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1b=True
except:
plotxdata1b=False
if plotxdata1a==True:
pl.plot(xdata1a,'r',label=item)
if plotxdata1b==True:
pl.plot(xdata1b,'b',label=NN_label)
pl.ylabel('Flux')
pl.xlabel('Year - Month')
pl.legend()
pl.savefig(mypathforResults+'/ANN and Tower plots by year and month for variable '+item+' at '+Site_ID)
#pl.show()
pl.close()
time.sleep(1)
示例10: plot
def plot(self):
"""Plot the scores"""
from pylab import plot
plot(self.xdata, self.ydata)
xlabel("Number of computeScore calls")
ylabel("Score")
ylim([0, ylim()[1]])
示例11: plot_cost
def plot_cost(self):
if self.show_cost not in self.train_outputs[0][0]:
raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost)
train_errors = [o[0][self.show_cost][self.cost_idx] for o in self.train_outputs]
test_errors = [o[0][self.show_cost][self.cost_idx] for o in self.test_outputs]
numbatches = len(self.train_batch_range)
test_errors = numpy.row_stack(test_errors)
test_errors = numpy.tile(test_errors, (1, self.testing_freq))
test_errors = list(test_errors.flatten())
test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors))
test_errors = test_errors[:len(train_errors)]
numepochs = len(train_errors) / float(numbatches)
pl.figure(1)
x = range(0, len(train_errors))
pl.plot(x, train_errors, 'k-', label='Training set')
pl.plot(x, test_errors, 'r-', label='Test set')
pl.legend()
ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches)
epoch_label_gran = int(ceil(numepochs / 20.)) # aim for about 20 labels
epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) # but round to nearest 10
ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs))
pl.xticks(ticklocs, ticklabels)
pl.xlabel('Epoch')
# pl.ylabel(self.show_cost)
pl.title(self.show_cost)
示例12: plot_heatingrate
def plot_heatingrate(data_dict, filename, do_show=True):
pl.figure(201)
color_list = ['b','r','g','k','y','r','g','b','k','y','r',]
fmtlist = ['s','d','o','s','d','o','s','d','o','s','d','o']
result_dict = {}
for key in data_dict.keys():
x = data_dict[key][0]
y = data_dict[key][1][:,0]
y_err = data_dict[key][1][:,1]
p0 = np.polyfit(x,y,1)
fit = LinFit(np.array([x,y,y_err]).transpose(), show_graph=False)
p1 = [0,0]
p1[0] = fit.param_dict[0]['Slope'][0]
p1[1] = fit.param_dict[0]['Offset'][0]
print fit
x0 = np.linspace(0,max(x))
cstr = color_list.pop(0)
fstr = fmtlist.pop(0)
lstr = key + " heating: {0:.2f} ph/ms".format((p1[0]*1e3))
pl.errorbar(x/1e3,y,y_err,fmt=fstr + cstr,label=lstr)
pl.plot(x0/1e3,np.polyval(p0,x0),cstr)
pl.plot(x0/1e3,np.polyval(p1,x0),cstr)
result_dict[key] = 1e3*np.array(fit.param_dict[0]['Slope'])
pl.xlabel('Heating time (ms)')
pl.ylabel('nbar')
if do_show:
pl.legend()
pl.show()
if filename != None:
pl.savefig(filename)
return result_dict
示例13: plotForce
def plotForce():
figure(size=3,aspect=0.5)
subplot(1,2,1)
from EvalTraj import plotFF
plotFF(vp=351,t=28,f=900,cm=0.6,foffset=8)
subplot_annotate()
subplot(1,2,2)
for i in [1,2,3,4]:
R=np.squeeze(np.load('Rdpse%d.npy'%i))
R=stats.nanmedian(R,axis=2)[:,1:,:]
dps=np.linspace(-1,1,201)[1:]
plt.plot(dps,R[:,:,2].mean(0));
plt.legend([0,0.1,0.2,0.3],loc=3)
i=2
R=np.squeeze(np.load('Rdpse%d.npy'%i))
R=stats.nanmedian(R,axis=2)[:,1:,:]
mn=np.argmin(R,axis=1)
y=np.random.randn(mn.shape[0])*0.00002+0.0438
plt.plot(np.sort(dps[mn[:,2]]),y,'+',mew=1,ms=6,mec=[ 0.39 , 0.76, 0.64])
plt.xlabel('Displacement of Force Origin')
plt.ylabel('Average Net Force Magnitude')
hh=dps[mn[:,2]]
err=np.std(hh)/np.sqrt(hh.shape[0])*stats.t.ppf(0.975,hh.shape[0])
err2=np.std(hh)/np.sqrt(hh.shape[0])*stats.t.ppf(0.75,hh.shape[0])
m=np.mean(hh)
print m, m-err,m+err
np.save('force',[m, m-err,m+err,m-err2,m+err2])
plt.xlim([-0.5,0.5])
plt.ylim([0.0435,0.046])
plt.grid(b=True,axis='x')
subplot_annotate()
示例14: plotB3reg
def plotB3reg():
w=loadStanFit('revE2B3BHreg.fit')
printCI(w,'mmu')
printCI(w,'mr')
for b in range(2):
subplot(1,2,b+1)
plt.title('')
px=np.array(np.linspace(-0.5,0.5,101),ndmin=2)
a0=np.array(w['mmu'][:,b],ndmin=2).T
a1=np.array(w['mr'][:,b],ndmin=2).T
y=np.concatenate([sap(a0+a1*px,97.5,axis=0),sap(a0+a1*px[:,::-1],2.5,axis=0)])
x=np.squeeze(np.concatenate([px,px[:,::-1]],axis=1))
plt.plot(px[0,:],np.median(a0)+np.median(a1)*px[0,:],'red')
#plt.plot([-1,1],[0.5,0.5],'grey')
ax=plt.gca()
ax.set_aspect(1)
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
y=np.concatenate([sap(a0+a1*px,75,axis=0),sap(a0+a1*px[:,::-1],25,axis=0)])
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
man=np.array([-0.4,-0.2,0,0.2,0.4])
mus=[]
for m in range(len(man)):
mus.append(loadStanFit('revE2B3BH%d.fit'%m)['mmu'][:,b])
mus=np.array(mus).T
errorbar(mus,x=man)
ax.set_xticks(man)
plt.xlim([-0.5,0.5])
plt.ylim([-0.4,0.8])
#plt.xlabel('Manipulated Displacement')
if b==0:
plt.ylabel('Perceived Displacemet')
plt.gca().set_yticklabels([])
subplot_annotate()
plt.text(-1.1,-0.6,'Pivot Displacement',fontsize=8);
示例15: plotB2reg
def plotB2reg(prefix=''):
w=loadStanFit(prefix+'revE2B2LHregCa.fit')
px=np.array(np.linspace(-0.5,0.5,101),ndmin=2)
a1=np.array(w['ma'][:,4],ndmin=2).T+1
a0=np.array(w['ma'][:,3],ndmin=2).T
printCI(w,'ma')
y=np.concatenate([sap(a0+a1*px,97.5,axis=0),sap(a0+a1*px[:,::-1],2.5,axis=0)])
x=np.squeeze(np.concatenate([px,px[:,::-1]],axis=1))
man=np.array([-0.4,-0.2,0,0.2,0.4])
plt.plot(px[0,:],np.median(a0)+np.median(a1)*px[0,:],'red')
#plt.plot([-1,1],[0.5,0.5],'grey')
ax=plt.gca()
ax.set_aspect(1)
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
y=np.concatenate([sap(a0+a1*px,75,axis=0),sap(a0+a1*px[:,::-1],25,axis=0)])
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
mus=[]
for m in range(len(man)):
mus.append(loadStanFit(prefix+'revE2B2LHC%d.fit'%m)['ma4']+man[m])
mus=np.array(mus).T
errorbar(mus,x=man)
ax.set_xticks(man)
plt.xlim([-0.5,0.5])
plt.ylim([-0.6,0.8])
plt.xlabel('Pivot Displacement')
plt.ylabel('Perceived Displacemet')