本文整理汇总了Python中pylab.pcolor函数的典型用法代码示例。如果您正苦于以下问题:Python pcolor函数的具体用法?Python pcolor怎么用?Python pcolor使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pcolor函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: heat_map
def heat_map(K, show, name):
pl.pcolor(K)
pl.colorbar()
pl.title(name)
pl.savefig(name)
if show == True:
pl.show()
示例2: correlation_matrix
def correlation_matrix(data, size=8.0):
""" Calculates and shows the correlation matrix of the pandas data frame
'data' as a heat map.
Only the correlations between numerical variables are calculated!
"""
# calculate the correlation matrix
corr = data.corr()
#print corr
lc = len(corr.columns)
# set some settings for plottin'
pl.pcolor(corr, vmin = -1, vmax = 1, edgecolor = "black")
pl.colorbar()
pl.xlim([-5,lc])
pl.ylim([0,lc+5])
pl.axis('off')
# anotate the rows and columns with their corresponding variables
ax = pl.gca()
for i in range(0,lc):
ax.annotate(corr.columns[i], (-0.5, i+0.5), \
size='large', horizontalalignment='right', verticalalignment='center')
ax.annotate(corr.columns[i], (i+0.5, lc+0.5),\
size='large', rotation='vertical',\
horizontalalignment='center', verticalalignment='right')
# change the size of the image
fig = pl.figure(num=1)
fig.set_size_inches(size+(size/4), size)
pl.show()
示例3: Xtest2
def Xtest2(self):
"""
Test from Kate Marvel
As the following code snippet demonstrates, regridding a
cdms2.tvariable.TransientVariable instance using regridTool='regrid2'
results in a new array that is masked everywhere. regridTool='esmf'
and regridTool='libcf' both work as expected.
This passes.
"""
import cdms2 as cdms
import numpy as np
filename = cdat_info.get_sampledata_path() + '/clt.nc'
a=cdms.open(filename)
data=a('clt')[0,...]
print data.mask #verify this data is not masked
GRID= data.getGrid() # input = output grid, passes
test_data=data.regrid(GRID,regridTool='regrid2')
# check that the mask does not extend everywhere...
self.assertNotEqual(test_data.mask.sum(), test_data.size)
if PLOT:
pylab.subplot(2, 1, 1)
pylab.pcolor(data[...])
pylab.title('data')
pylab.subplot(2, 1, 2)
pylab.pcolor(test_data[...])
pylab.title('test_data (interpolated data)')
pylab.show()
示例4: __call__
def __call__(self, n):
if len(self.f.shape) == 3:
# f = f[x,v,t], 2 dim in phase space
ft = self.f[n,:,:]
pylab.pcolor(self.X, self.V, ft.T, cmap='jet')
pylab.colorbar()
pylab.clim(0,0.38) # for Landau test case
pylab.grid()
pylab.axis([self.xmin, self.xmax, self.ymin, self.ymax])
pylab.xlabel('$x$', fontsize = 18)
pylab.ylabel('$v$', fontsize = 18)
pylab.title('$N_x$ = %d, $N_v$ = %d, $t$ = %2.1f' % (self.x.N, self.v.N, self.it*self.t.width))
pylab.savefig(self.path + self.filename)
pylab.clf()
return None
if len(self.f.shape) == 2:
# f = f[x], 1 dim in phase space
ft = self.f[n,:]
pylab.plot(self.x.gridvalues,ft,'ob')
pylab.grid()
pylab.axis([self.xmin, self.xmax, self.ymin, self.ymax])
pylab.xlabel('$x$', fontsize = 18)
pylab.ylabel('$f(x)$', fontsize = 18)
pylab.savefig(self.path + self.filename)
return None
示例5: updateColorTable
def updateColorTable(self, cItem):
print "now viz!"+str(cItem.row())+","+str(cItem.column())
row = cItem.row()
col = cItem.column()
pl.clf()
#pl.ion()
x = pl.arange(self.dataDimen+1)
y = pl.arange(self.dataDimen+1)
X, Y = pl.meshgrid(x, y)
pl.subplot(1,2,1)
pl.pcolor(X, Y, self.mWx[row*self.dataMaxRange+col])
pl.gca().set_aspect('equal')
pl.colorbar()
pl.gray()
pl.title("user 1")
pl.subplot(1,2,2)
pl.pcolor(X, Y, self.mWy[row*self.dataMaxRange+col])
pl.gca().set_aspect('equal')
pl.colorbar()
pl.gray()
pl.title("user 2")
#pl.tight_layout()
pl.draw()
#pl.show()
pl.show(block=False)
示例6: figurepoimsimple_small
def figurepoimsimple_small(poim, l, start, savefile, show):
R = poim
py.figure(figsize=(14, 12))
motivelen = int(np.log(len(poim)) / np.log(4))
ylabel = []
for i in range(int(math.pow(4, motivelen))):
label = []
index = i
for j in range(motivelen):
label.append(index % 4)
index = int(index / 4)
label.reverse()
ylabel.append(veclisttodna(label))
py.pcolor(R[:, start:start + l])
cb=py.colorbar()
for t in cb.ax.get_yticklabels():
t.set_fontsize(40)
diff = int((l / 5)) - 1
x_places = py.arange(0.5, l, diff)
xa = np.arange(start, start + l, diff)
diff = int((l / 4))
x_places = py.arange(0.5, l , diff)
xa = np.arange(start + 1, start + 1 + l, diff)
py.xlabel("Position", fontsize=46)
py.ylabel("Motif", fontsize=46)
py.yticks(np.arange(math.pow(4, motivelen)) + 0.5, (ylabel),fontsize=40)
py.xticks(x_places, (xa.tolist()),fontsize=40)
if savefile != "":
py.savefig(savefile)
print "the poim should show up here"
if show:
py.show()
示例7: main
def main(argv=None):
if argv is None:
argv = sys.argv
from pylab import pcolor, show
pcolor(FlowNetwork().fs()[0])
show()
示例8: VisualizeColorMaps
def VisualizeColorMaps(CombinedMat, NormalizedPrunedDepMat,
PrunedSemanticSimMat, OntologySimilarityMat, PrunedLabels):
'''
#plt.grid(True)
#plt.subplots_adjust(bottom=0.50)
plt.pcolor(NormalizedPrunedDepMat)
plt.colorbar(use_gridspec=True) #to resize to the tight layout format
plt.yticks(numpy.arange(0.5,len(CombinedMat) + 0.5),PrunedLabels)
plt.xticks(numpy.arange(0.5,len(CombinedMat)+0.5),PrunedLabels, rotation=30,ha='right')
#in prev line: ha = horizontal alignment - right is used to make label terminate the the center of the grid
plt.title("NormalizedPrunedDepMat",fontsize=20,verticalalignment='bottom')
plt.tight_layout() #to resize so that all labels are visible
#plt.savefig('foo.pdf',figsize=(4,4),dpi=600) # to save image as pdf, fig size may or maynot be used
plt.show()
plt.pcolor(PrunedSemanticSimMat)
plt.colorbar(use_gridspec=True)
plt.yticks(numpy.arange(0.5,len(CombinedMat) + 0.5),PrunedLabels)
plt.xticks(numpy.arange(0.5,len(CombinedMat) + 0.5),PrunedLabels, rotation=45,ha='right')
plt.title("PrunedSemanticSimMat",fontsize=20,verticalalignment='bottom')
plt.tight_layout()
plt.show()
'''
plt.pcolor(OntologySimilarityMat)
plt.colorbar(use_gridspec=True)
plt.yticks(numpy.arange(0.5,len(CombinedMat) + 0.5),PrunedLabels)
plt.xticks(numpy.arange(0.5,len(CombinedMat) + 0.5),PrunedLabels, rotation=45,ha='right')
plt.title("OntologySimilarityMat",fontsize=20,verticalalignment='bottom')
plt.xlabel('Packages')
plt.ylabel('Packages')
plt.tight_layout()
plt.show()
示例9: pcAddition
def pcAddition(MOVIE=True):
#BP S1
out=[]
for vp in [1,0]:
path=inpath+'vp%03d/E%d/'%(vp+1,97)
coeff=np.load(path+'X/coeff.npy')
pc1=_getPC(coeff,0)
if pc1.mean()>=0.4: pc1=1-pc1
pc2=_getPC(coeff,1)
if pc2.mean()>=0.4: pc2=1-pc2
out.append([])
out[-1].append(pc1)
out[-1].append(pc2)
out[-1].append((pc1-pc2+1)/2.)
#out[-1].append((pc1+pc2)/2.)
if False:
out.append([])
out[-1].append(pc1)
out[-1].append(1-pc2)
out[-1].append((pc1+pc2)/2.)
if MOVIE:
plotGifGrid(out,fn=figpath+'Pixel/pcAddition'+FMT,bcgclr=1,snapshot=2,
plottime=True,text=[['A',20,12,-10],['B',20,84,-10]])
bla
print out[0][0].shape
cols=5;fs=np.linspace(0,out[0][0].shape[0]-1,cols)
ps=np.arange(out[0][0].shape[1])
for i in range(len(out)):
for j in range(len(out[0])):
for fi in range(cols):
plt.subplot(3,cols,j*cols+fi+1)
plt.pcolor(ps,ps,out[i][j][fs[fi],:,:],cmap='gray')
#plt.grid()
plt.savefig(figpath+'Pixel'+os.path.sep+'pcAddition',
dpi=DPI,bbox_inches='tight')
示例10: som_plot_mapping
def som_plot_mapping(distance_map):
bone()
pcolor(distance_map.T) # plotting the distance map as background
colorbar()
#axis([0,som.weights.shape[0],0,som.weights.shape[1]])
ion()
show() # show the figure
示例11: testeps
def testeps(d):
M.clf()
M.pcolor(d)
M.axis('tight')
M.colorbar()
M.gcf().set_size_inches((7.5,6.))
M.savefig('test.png',dpi=240)
示例12: show
def show( self, maxIdx=None, indices=None):
print( 'Exemplar projection')
som = self.som
if maxIdx == None:
maxIdx = len(self.data)
if indices ==None:
data= self.data[0:maxIdx]
target = self.target
else:
data= self.data[indices]
target= self.target[indices]
bone()
pcolor(som.distance_map().T) # plotting the distance map as background
colorbar()
t = zeros(len(target),dtype=int)
t[target == 'A'] = 0
t[target == 'B'] = 1
# use different colors and markers for each label
markers = ['o','s','D']
colors = ['r','g','b']
for cnt,xx in enumerate(data):
w = som.winner(xx) # getting the winner
# palce a marker on the winning position for the sample xx
plot(w[0]+.5,w[1]+.5,markers[t[cnt]],markerfacecolor='None',
markeredgecolor=colors[t[cnt]],markersize=12,markeredgewidth=2)
axis([0,som.weights.shape[0],0,som.weights.shape[1]])
show() # show the figure
示例13: plot_time_course
def plot_time_course(self, data, mode='boolean', fontsize=16):
# TODO sort columnsi alphabetically
# FIXME: twiny labels are slightly shifted
# TODO flip
if mode == 'boolean':
cm = pylab.get_cmap('gray')
pylab.clf()
data = pd.DataFrame(data).fillna(0.5)
pylab.pcolor(data, cmap=cm, vmin=0, vmax=1,
shading='faceted')
pylab.colorbar()
ax1 = pylab.gca()
ax1.set_xticks([])
Ndata = len(data.columns)
ax1.set_xlim(0, Ndata)
ax = pylab.twiny()
ax.set_xticks(pylab.linspace(0.5, Ndata+0.5, Ndata ))
ax.set_xticklabels(data.columns, fontsize=fontsize, rotation=90)
times = list(data.index)
Ntimes = len(times)
ax1.set_yticks([x+0.5 for x in times])
ax1.set_yticklabels(times[::-1],
fontsize=fontsize)
pylab.sca(ax1)
else:
print('not implemented')
示例14: plot
def plot(self):
"""
.. plot::
:include-source:
:width: 80%
from cellnopt.simulate import *
from cellnopt.core import *
pkn = cnodata("PKN-ToyPB.sif")
midas = cnodata("MD-ToyPB.csv")
s = boolean.BooleanSimulator(CNOGraph(pkn, midas))
s.simulate(30)
s.plot()
"""
pylab.clf()
data = numpy.array([self.data[x] for x in self.species if x in self.species])
data = data.transpose()
data = 1 - pylab.flipud(data)
pylab.pcolor(data, vmin=0, vmax=1, edgecolors="k")
pylab.xlabel("species");
pylab.ylabel("Time (tick)");
pylab.gray()
pylab.xticks([0.5+x for x in range(0,30)], self.species, rotation=90)
pylab.ylim([0, self.tick])
pylab.xlim([0, len(self.species)])
示例15: elo_grid_search
def elo_grid_search(data, run=False):
alphas = np.arange(0.4, 2, 0.2)
betas = np.arange(0.02, 0.2, 0.02)
results = pd.DataFrame(columns=alphas, index=betas, dtype=float)
plt.figure()
for alpha in alphas:
for beta in betas:
model = EloModel(alpha=alpha, beta=beta)
# model = EloTreeModel(alpha=alpha, beta=beta, clusters=utils.get_maps("data/"), local_update_boost=0.5)
if run:
Runner(data, model).run()
report = Evaluator(data, model).evaluate()
else:
report = Evaluator(data, model).get_report()
# results[alpha][beta] = report["brier"]["reliability"]
results[alpha][beta] = report["rmse"]
plt.title(data)
cmap = plt.cm.get_cmap("gray")
cmap.set_gamma(0.5)
plt.pcolor(results, cmap=cmap)
plt.yticks(np.arange(0.5, len(results.index), 1), results.index)
plt.ylabel("betas")
plt.xticks(np.arange(0.5, len(results.columns), 1), results.columns)
plt.xlabel("alphas")
plt.colorbar()