本文整理汇总了Python中pylab.normpdf函数的典型用法代码示例。如果您正苦于以下问题:Python normpdf函数的具体用法?Python normpdf怎么用?Python normpdf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了normpdf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fig3
def fig3(x):
# Figure 3
# now we create a cumulative histogram of the data
#
P.figure()
n, bins, patches = P.hist(x, 50, normed=1, histtype='step', cumulative=True)
# add a line showing the expected distribution
y = P.normpdf(bins, mu, sigma).cumsum()
y /= y[-1]
l = P.plot(bins, y, 'k--', linewidth=1.5)
# create a second data-set with a smaller standard deviation
sigma2 = 15.
x = mu + sigma2 * P.randn(10000)
n, bins, patches = P.hist(x, bins=bins, normed=1, histtype='step', cumulative=True)
# add a line showing the expected distribution
y = P.normpdf(bins, mu, sigma2).cumsum()
y /= y[-1]
l = P.plot(bins, y, 'r--', linewidth=1.5)
# finally overplot a reverted cumulative histogram
n, bins, patches = P.hist(x, bins=bins, normed=1,
histtype='step', cumulative=-1)
P.grid(True)
P.ylim(0, 1.05)
示例2: plot
def plot(self, normed=True, N=1000, Xmin=None, Xmax=None, bins=50, color='red', lw=2,
hist_kw={'color':'#5F9EA0'}, ax=None):
if ax:
ax.hist(self.data, normed=normed, bins=bins, **hist_kw)
else:
pylab.hist(self.data, normed=normed, bins=bins, **hist_kw)
if Xmin is None:
Xmin = self.data.min()
if Xmax is None:
Xmax = self.data.max()
X = pylab.linspace(Xmin, Xmax, N)
if ax:
ax.plot(X, [self.model.pdf(x, self.results.x) for x in X], color=color, lw=lw)
else:
pylab.plot(X, [self.model.pdf(x, self.results.x) for x in X], color=color, lw=lw)
K = len(self.results.x)
# The PIs must be normalised
for i in range(0, K/3):
mu, sigma, pi_ = self.results.mus[i], self.results.sigmas[i], self.results.pis[i]
if ax:
ax.plot(X, [pi_ * pylab.normpdf(x, mu, sigma) for x in X], 'g--', alpha=0.5)
else:
pylab.plot(X, [pi_ * pylab.normpdf(x, mu, sigma) for x in X], 'g--', alpha=0.5)
示例3: extraHistogram
def extraHistogram():
import pylab as P
import numpy as N
P.figure()
bins = 25
min = 23310.
max = 23455.
nu, binsu, patchesu = P.hist(telfocusOld, bins=bins, rwidth=0.9, range = (min, max) ,
label = 'UnCorrected Data', fc ='b', alpha = 0.4, normed = True)
n, bins, patches = P.hist(telfocusCorrected, bins=bins, rwidth=0.7, range = (min, max),
label='Corrected Data', fc = 'r', alpha = 0.6, normed = True)
#P.axvline(medianNew, label = 'Corrected Median', color = 'r', lw = 1.1)
#P.axvline(medianOld, label = 'UnCorrected Median', color = 'b', lw = 1.1)
y1 = P.normpdf(binsu, N.mean(telfocusOld), N.std(telfocusOld))
y2 = P.normpdf(bins, N.mean(telfocusCorrected), N.std(telfocusCorrected))
P.plot(binsu, y1, 'b-', linewidth = 2.5, label='Gaussian Fit')
P.plot(bins, y2, 'r-', linewidth = 3., label='Gaussian Fit')
P.xlim(min,max)
P.xlabel('Telescope Focus + median Offset')
P.ylabel('Normed Values')
P.legend(shadow=True, loc ='best')
P.savefig('TelFocusHistogram.png')
P.close()
示例4: pdf
def pdf(self, x, params, normalise=True):
"""Expected parameters are
params is a list of gaussian distribution ordered as mu, sigma, pi,
mu2, sigma2, pi2, ...
"""
assert divmod(len(params), 3)[1] == 0
assert len(params) >= 3 * self.k
k = len(params) / 3
self.k = k
pis = np.array(params[2::3])
if any(np.array(pis)<0):
return 0
if normalise is True:
pis /= pis.sum()
# !!! sum pi must equal 1 otherwise may diverge badly
data = 0
for i in range(0, k):
mu, sigma, pi_ = params[i*3: (i+1)*3]
pi_ = pis[i]
if sigma != 0:
data += pi_ * pylab.normpdf(x, mu, sigma)
return data
示例5: main
def main():
''' Main Function'''
# Start and End date of the charts
dt_start = dt.datetime(2011, 1, 1)
dt_end = dt.datetime(2012, 12, 31)
#goog = pd.io.data.get_data_yahoo("GOOG", dt_start, dt_end) # not working
SPY = DataReader("SPY", "yahoo", dt_start, dt_end)
#YHOO = DataReader("YHOO", "yahoo", dt_start, dt_end)
# normalize prices
nPrice = sc.normalizedPrice(SPY['Adj Close'].values)
#daily return
daily_ret = sc.computeDailyReturn(nPrice)
plt.subplot(1,2,1)
plt.plot(daily_ret*100, 'b-')
plt.ylabel('Daily return (%)')
plt.legend(['SPY-Daily Return based on Adjuested close'])
#daily return histogram
plt.subplot(1,2,2)
n, bins, patches = plt.hist(daily_ret, 100, normed=1, facecolor='green', alpha=0.5)
mean = np.mean(daily_ret)
sigma = np.std(daily_ret)
y = P.normpdf( bins, mean, sigma)
plt.plot(bins, y, 'k--', linewidth=1.5)
plt.ylabel('Probability')
plt.legend(['normal distribution approximation','SPY-hostogram of daily return'])
plt.show()
示例6: plot_histogram
def plot_histogram():
import numpy as np
import pylab as P
# The hist() function now has a lot more options
#
#
# first create a single histogram
#
P.figure()
mu, sigma = 40, 35
x = abs(np.random.normal(mu, sigma, 1000000))
# the histogram of the data with histtype='step'
n, bins, patches = P.hist(x, 100, normed=1, histtype='stepfilled')
P.setp(patches, 'facecolor', 'g', 'alpha', 0.50)
P.vlines(np.mean(x), 0, max(n))
P.vlines(np.median(x), 0, max(n))
# add a line showing the expected distribution
y = np.abs(P.normpdf( bins, mu, sigma))
l = P.plot(bins, y, 'k--', linewidth=1.5)
P.show()
示例7: load_spectrum_gnirs
def load_spectrum_gnirs(file, velScale, resolution):
"""
Load up a spectrum from the Gemini GNIRS library.
"""
spec, hdr = pyfits.getdata(file, header=True)
pixScale = hdr['CD1_1'] * 1.0e-4 # microns
wavelength = np.arange(len(spec), dtype=float)
wavelength -= (hdr['CRPIX1']-1.0) # get into pixels relative to the reference pix
wavelength *= hdr['CD1_1'] # convert to the proper wavelength scale (Ang)
wavelength += hdr['CRVAL1'] # shift to the wavelength zeropoint
# Convert from Angstroms to microns
wavelength *= 1.0e-4
deltaWave = 2.21344 / resolution # microns
resInPixels = deltaWave / pixScale # pixels
sigmaInPixels = resInPixels / 2.355
psfBins = np.arange(-4*math.ceil(resInPixels), 4*math.ceil(resInPixels))
psf = py.normpdf(psfBins, 0, sigmaInPixels)
specLowRes = np.convolve(spec, psf, mode='same')
# Rebin into equals logarithmic steps in wavelength
logWave, specNew, vel = log_rebin2(wavelength, specLowRes,
inMicrons=True, velScale=velScale)
return logWave, specNew
示例8: complicatedHisto
def complicatedHisto(x, dists, var, mean):
'''
this histogram will take a 2d x with each column being a different
set of data and then plot each one with its own color.. like in one of the
histogram matplotlib examples
'''
fig = plt.figure()
dist = ['{:.2f}'.format(k) for k in dists]
colors = ('g', 'b', 'r','c', 'm','y', 'k','w')
n, bins, patches = P.hist(x, 20, normed=1, histtype='bar',
color=colors[0:len(dist)],
label=dist)
P.legend()
P.show()
print "woohoo"
fig2 = plt.figure(2)
xbins = np.linspace(-0.5,3,200)
for sigma, mu,d,c in zip(var, mean, dists,colors):
y = P.normpdf(xbins, mu, np.sqrt(sigma))
l = P.plot(xbins, y, c, label=d, linewidth=1.5)
P.legend()
示例9: build_hist
def build_hist(ax, dat, title=None) :
mu, sigma = np.average(dat), np.std(dat)
n, bins, patches = ax.hist(dat, 50, normed=1, histtype='stepfilled')
P.setp(patches, 'facecolor', 'g', 'alpha', 0.75)
y = P.normpdf(bins, mu, sigma)
l = ax.plot(bins, y, 'k--', linewidth=1.5)
if title != None :
ax.set_title(title)
示例10: histDemo
def histDemo(self):
mu, sigma = 200, 25
x = mu + sigma*P.randn(10000)
n, bins, patches = P.hist(x, 50, normed=1, histtype='stepfilled')
P.setp(patches, 'facecolor', 'g', 'alpha', 0.75)
y = P.normpdf( bins, mu, sigma)
l = P.plot(bins, y, 'k--', linewidth=1.5)
P.savefig(inspect.stack()[0][3]+".png")
示例11: analysis
def analysis(series_dir):
files = glob(series_dir + "/*.dicm")
files.sort()
series_intensity = [imageIntensity(name) for name in files]
y = normpdf(series_intensity, min(series_intensity), max(series_intensity))
plot([i for i in range(len(series_intensity))], series_intensity, 'b')
plot([i for i in range(len(series_intensity))], deriv2(series_intensity), 'r')
grid(True)
show()
return series_intensity
示例12: pdf_model
def pdf_model(x, p):
print
print "pdf_model()"
print " x=%s" % x
print " p=%s" % (p,)
mu1, sig1, mu2, sig2, pi_1 = p
print " mu1: %s" % mu1
print " sig1: %s" % sig1
print " mu2: %s" % mu2
print " sig2: %s" % sig2
print " pi_1: %s" % pi_1
raw1 = py.normpdf(x, mu1, sig1)
print " raw1: %s" % raw1
raw2 = py.normpdf(x, mu2, sig2)
print " raw2: %s" % raw2
ret = pi_1 * raw1 + (1 - pi_1) * raw2
print " ret: %s" % ret
print
return ret
示例13: stability
def stability(paths, show=False, output=None, annotations=None, aspect=2):
# COLOR = "#548BE3"
COLOR = "#8CB8FF"
figure = p.figure()
pltnum = len(paths)//2 + len(paths)%2
for i, fname in enumerate(paths):
with open(fname) as fd:
values = []
t = fd.readline().strip("#")
for l in fd.readlines():
values += [float(l.strip())]
p.subplot(pltnum, 2, i+1)
## title
if annotations:
p.title(annotations[i])
else:
p.title(t)
avg = average(values)
percents = list(map(lambda x: avg/x-1, values))
n, bins, patches = p.hist(percents,
bins=50, normed=True,
histtype='bar', color=COLOR)
mu, sigma = norm.fit(percents)
y = p.normpdf(bins, mu, sigma)
p.plot(bins, y, 'r-', linewidth=3)
p.xlim(min(bins), max(bins))
## set aspect
xmin, xmax = p.xlim()
ymin, ymax = p.ylim()
xr = xmax - xmin
yr = ymax - ymin
aspect = xr/yr/2
g = p.gca()
g.set_aspect(aspect)
# p.figaspect(aspect)
## remove y axis
yaxis = p.gca().yaxis
yaxis.set_major_locator(MaxNLocator(nbins=4, prune='lower'))
# yaxis.set_visible(False)
## xaxis
xaxis = p.gca().xaxis
xaxis.set_major_formatter(to_percent)
xaxis.set_major_locator(MaxNLocator(nbins=5, prune='lower'))
p.tight_layout(pad=0.5)
if output:
p.savefig(output, bbox_inches='tight')
if show:
p.show()
示例14: fig1
def fig1(x):
# Figure 1
# first create a single histogram
#
# the histogram of the data with histtype='step'
P.figure()
n, bins, patches = P.hist(x, 50, normed=1, histtype='stepfilled')
P.setp(patches, 'facecolor', 'g', 'alpha', 0.75)
# add a line showing the expected distribution
y = P.normpdf(bins, mu, sigma)
l = P.plot(bins, y, 'k--', linewidth=1.5)
示例15: densityplot
def densityplot(data):
"""
Plots a histogram of daily returns from data, plus fitted normal density.
"""
dailyreturns = percent_change(data)
pylab.hist(dailyreturns, bins=200, normed=True)
m, M = min(dailyreturns), max(dailyreturns)
mu = pylab.mean(dailyreturns)
sigma = pylab.std(dailyreturns)
grid = pylab.linspace(m, M, 100)
densityvalues = pylab.normpdf(grid, mu, sigma)
pylab.plot(grid, densityvalues, 'r-')
pylab.show()