本文整理汇总了Python中pylab.linspace函数的典型用法代码示例。如果您正苦于以下问题:Python linspace函数的具体用法?Python linspace怎么用?Python linspace使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了linspace函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: demo
def demo():
from pylab import hold, linspace, plot, show
hold(True)
#y = [9,6,1,3,8,4,2]
#y = [9,11,13,3,-2,0,2]
y = [9,11,2,3,8,0,2]
#y = [9,9,1,3,8,2,2]
xeq = linspace(0,1,len(y))
x = xeq+0
#x[1],x[-2] = x[0],x[-1]
#x[1],x[-2] = x[2],x[-3]
#x[1],x[2] = x[2],x[1]
#x[1],x[-2] = x[2]-0.001,x[-2]+0.001
#x[1],x[-2] = x[1]-x[1]/2,x[-1]-x[1]/2
t = linspace(x[0],x[-1],400)
plot(xeq,y,':oy')
plot(t,bspline(y,t,clamp=False),'-.y') # bspline
plot(t,bspline(y,t,clamp=True),'-y') # bspline
xt,yt = pbs(x,y,t,clamp=False)
plot(xt,yt,'-.b') # pbs
xt,yt = pbs(x,y,t,clamp=True)
plot(xt,yt,'-b') # pbs
#xt,yt = pbs(x,y,t,clamp=True, parametric=True)
#plot(xt,yt,'-g') # pbs
plot(sorted(x),y,':ob')
show()
示例2: zeroPaddData
def zeroPaddData(self,desiredLength,paddmode='zero',where='end'):
#zero padds the time domain data, it is possible to padd at the beginning,
#or at the end, and further gaussian or real zero padding is possible
#might not work for gaussian mode!
desiredLength=int(desiredLength)
#escape the function
if desiredLength<0:
return 0
#calculate the paddvectors
if paddmode=='gaussian':
paddvec=py.normal(0,py.std(self.getPreceedingNoise())*0.05,desiredLength)
else:
paddvec=py.ones((desiredLength,self.tdData.shape[1]-1))
paddvec*=py.mean(self.tdData[-20:,1:])
timevec=self.getTimes()
if where=='end':
#timeaxis:
newtimes=py.linspace(timevec[-1],timevec[-1]+desiredLength*self.dt,desiredLength)
paddvec=py.column_stack((newtimes,paddvec))
longvec=py.row_stack((self.tdData,paddvec))
else:
newtimes=py.linspace(timevec[0]-(desiredLength+1)*self.dt,timevec[0],desiredLength)
paddvec=py.column_stack((newtimes,paddvec))
longvec=py.row_stack((paddvec,self.tdData))
self.setTDData(longvec)
示例3: contourFromFunction
def contourFromFunction(XYfunction,plotPoints=100,\
xrange=None,yrange=None,numContours=20,alpha=1.0, contourLines=None):
"""
Given a 2D function, plots constant contours over the given
range. If the range is not given, the current plotting
window range is used.
"""
# set up x and y ranges
currentAxis = pylab.axis()
if xrange is not None:
xvalues = pylab.linspace(xrange[0],xrange[1],plotPoints)
else:
xvalues = pylab.linspace(currentAxis[0],currentAxis[1],plotPoints)
if yrange is not None:
yvalues = pylab.linspace(yrange[0],yrange[1],plotPoints)
else:
yvalues = pylab.linspace(currentAxis[2],currentAxis[3],plotPoints)
#coordArray = _coordinateArray2D(xvalues,yvalues)
# add extra dimension to this to make iterable?
# bug here! need to fix for contour plots
z = map( lambda y: map(lambda x: XYfunction(x,y), xvalues), yvalues)
if contourLines:
pylab.contour(xvalues,yvalues,z,contourLines,alpha=alpha)
else:
pylab.contour(xvalues,yvalues,z,numContours,alpha=alpha)
示例4: griddata
def griddata( X, Y, Z, xl, yl, xr, yr, dx):
# define grid.
xi, yi = p.meshgrid( p.linspace(xl,xr, int((xr-xl)/dx)+1), p.linspace(yl,yr, int((yr-yl)/dx)+1))
# grid the data.
zi = mgriddata(X,Y,Z,xi,yi)
New = grid( zi, xl, yl, dx)
return New
示例5: data2fig
def data2fig(data, X, options, legend_title, xlabel, ylabel=r'Reachability~$\reachability$'):
if options['grayscale']:
colors = options['graycm'](pylab.linspace(0, 1, len(data.keys())))
else:
colors = options['color'](pylab.linspace(0, 1, len(data.keys())))
fig = MyFig(options, figsize=(10, 8), xlabel=r'Sources~$\sources$', ylabel=ylabel, grid=False, aspect='auto', legend=True)
for j, nhdp_ht in enumerate(sorted(data.keys())):
d = data[nhdp_ht]
try:
mean_y = [scipy.mean(d[n]) for n in X]
except KeyError:
logging.warning('key \"%s\" not found, continuing...', nhdp_ht)
continue
confs_y = [confidence(d[n])[2] for n in X]
poly = [conf2poly(X, list(numpy.array(mean_y)+numpy.array(confs_y)), list(numpy.array(mean_y)-numpy.array(confs_y)), color=colors[j])]
patch_collection = PatchCollection(poly, match_original=True)
patch_collection.set_alpha(0.3)
patch_collection.set_linestyle('dashed')
fig.ax.add_collection(patch_collection)
fig.ax.plot(X, mean_y, label='$%d$' % nhdp_ht, color=colors[j])
fig.ax.set_xticks(X)
fig.ax.set_xticklabels(['$%s$' % i for i in X])
fig.ax.set_ylim(0,1)
fig.legend_title = legend_title
return fig
示例6: plot_interfaces
def plot_interfaces(current_data):
from pylab import linspace, plot
xl = linspace(xp1,xp2,100)
yl = linspace(yp1,yp2,100)
plot(xl,yl,'g')
xl = linspace(xlimits[0],xlimits[1],100)
plot(xl,0.0*xl,'b')
示例7: test_operation_approx
def test_operation_approx():
def flux_qubit_potential(phi_m, phi_p):
return 2 + alpha - 2 * pl.cos(phi_p)*pl.cos(phi_m) - alpha * pl.cos(phi_ext - 2*phi_p)
alpha = 0.7
phi_ext = 2 * np.pi * 0.5
phi_m = pl.linspace(0, 2*np.pi, 100)
phi_p = pl.linspace(0, 2*np.pi, 100)
X,Y = pl.meshgrid(phi_p, phi_m)
Z = flux_qubit_potential(X, Y).T
# the diagram creatinos
from diagram.operations.computations import multiply
from diagram.ternary import AEV3DD
aevdd = AEV3DD()
diagram3 = aevdd.create(Z, 0, True)
diagram4 = aevdd.create(Z, 0, True)
aevdd_mat = multiply(diagram3, diagram4, 9).to_matrix(77, True)
aevdd_mat_approx = multiply(diagram3, diagram4, 9, approximation_precision=1, in_place='1').to_matrix(27, True)
pl.plt.figure()
fig, ax = pl.plt.subplots()
p = ax.pcolor(X/(2*pl.pi), Y/(2*pl.pi), Z, cmap=pl.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max())
cb = fig.colorbar(p, ax=ax)
p = ax.pcolor(X/(2*pl.pi), Y/(2*pl.pi), Z, cmap=pl.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max())
cb = fig.colorbar(p, ax=ax)
# cnt = ax.contour(Z, cmap=pl.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1])
pl.show()
示例8: plotDistribution
def plotDistribution(self):
# plot frequency count for the entire vocabulary
threshold = 1000
size = len(self.listOfDict[0])
x = linspace(1, size, size)
y = sorted(self.listOfDict[0].values(), reverse=True)
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 0.8, 0.8])
axes.plot(x, y, 'r')
axes.set_xlabel('x')
axes.set_ylabel('y')
axes.set_title('title');
plt.show()
#plot frequency count for all words with count over a given threshold (e.g. number of files read)
threshold = self.numFilesRead
size = len(self.listOfDict[0])
size_relevant = sum(1 for i in self.listOfDict[0].values() if i>threshold)
x = linspace(1, size_relevant, size_relevant)
y = sorted([i for i in self.listOfDict[0].values() if i>threshold], reverse=True)
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 0.8, 0.8])
axes.plot(x, y, 'r')
axes.set_xlabel('x')
axes.set_ylabel('y')
axes.set_title('title');
plt.show()
示例9: gfe4
def gfe4():
x2=plt.linspace(1e-20,.13,90000)
xmin2=((4*np.pi*(SW.R)**3)/3)*1e-20
xmax2=((4*np.pi*(SW.R)**3)/3)*.13
xff2 = plt.linspace(xmin2,xmax2,90000)
thigh=100
plt.figure()
plt.title('Grand free energy per volume vs ff @ T=%0.4f'%Tlist[thigh])
plt.ylabel('Grand free energy per volume')
plt.xlabel('filling fraction')
plt.plot(xff2,SW.phi(Tlist[thigh],x2,nR[thigh]),color='#f36118',linewidth=3)
#plt.axvline(nL[thigh])
#plt.axvline(nR[thigh])
#plt.axhline(SW.phi(Tlist[thigh],nR[thigh]))
#plt.plot(x2,x2-x2,'c')
plt.plot(nL[thigh]*((4*np.pi*(SW.R)**3)/3),SW.phi(Tlist[thigh],nL[thigh],nR[thigh]),'ko')
plt.plot(nR[thigh]*((4*np.pi*(SW.R)**3)/3),SW.phi(Tlist[thigh],nR[thigh],nR[thigh]),'ko')
plt.axhline(SW.phi(Tlist[thigh],nR[thigh],nR[thigh]),color='c',linewidth=2)
print(Tlist[100])
print(nL[100],nR[100])
plt.savefig('figs/gfe_cotangent.pdf')
plt.figure()
plt.plot(xff2,SW.phi(Tlist[thigh],x2,nR[thigh]),color='#f36118',linewidth=3)
plt.plot(nL[thigh]*((4*np.pi*(SW.R)**3)/3),SW.phi(Tlist[thigh],nL[thigh],nR[thigh]),'ko')
plt.plot(nR[thigh]*((4*np.pi*(SW.R)**3)/3),SW.phi(Tlist[thigh],nR[thigh],nR[thigh]),'ko')
plt.axhline(SW.phi(Tlist[thigh],nR[thigh],nR[thigh]),color='c',linewidth=2)
plt.xlim(0,0.0003)
plt.ylim(-.000014,0.000006)
print(Tlist[100])
print(nL[100],nR[100])
plt.savefig('figs/gfe_insert_cotangent.pdf')
示例10: draw_bandstructure
def draw_bandstructure(
jobname, kspace, band, ext=".csv", format="pdf", filled=True, levels=15, lines=False, labeled=False, legend=False
):
# clf()
fig = figure(figsize=fig_size)
ax = fig.add_subplot(111, aspect="equal")
x, y, z = loadtxt(jobname + ext, delimiter=", ", skiprows=1, usecols=(1, 2, 4 + band), unpack=True)
if kspace.dimensions == 1:
pylab.plot(x, y, z)
elif kspace.dimensions == 2:
xi = linspace(-0.5, 0.5, kspace.x_res)
yi = linspace(-0.5, 0.5, kspace.y_res)
zi = griddata(x, y, z, xi, yi)
if filled:
cs = ax.contourf(xi, yi, zi, levels, **contour_filled)
legend and colorbar(cs, **colorbar_style)
cs = lines and ax.contour(xi, yi, zi, levels, **contour_lines)
labeled and lines and clabel(cs, fontsize=8, inline=1)
else:
cs = ax.contour(xi, yi, zi, levels, **contour_plain)
legend and colorbar(cs, **colorbar_style)
labeled and clabel(cs, fontsize=8, inline=1)
ax.set_xlim(-0.5, 0.5)
ax.set_ylim(-0.5, 0.5)
savefig(jobname + format, format=format, transparent=True)
示例11: main
def main():
"""
This shows the use of SynChan with Izhikevich neuron. This can be
used for creating a network of Izhikevich neurons.
"""
simtime = 200.0
stepsize = 10.0
model_dict = make_model()
vm, inject, gk, spike = setup_data_recording(model_dict['neuron'],
model_dict['pulse'],
model_dict['synapse'],
model_dict['spike_in'])
mutils.setDefaultDt(elecdt=0.01, plotdt2=0.25)
mutils.assignDefaultTicks(solver='ee')
moose.reinit()
mutils.stepRun(simtime, stepsize)
pylab.subplot(411)
pylab.plot(pylab.linspace(0, simtime, len(vm.vector)), vm.vector, label='Vm (mV)')
pylab.legend()
pylab.subplot(412)
pylab.plot(pylab.linspace(0, simtime, len(inject.vector)), inject.vector, label='Inject (uA)')
pylab.legend()
pylab.subplot(413)
pylab.plot(spike.vector, pylab.ones(len(spike.vector)), '|', label='input spike times')
pylab.legend()
pylab.subplot(414)
pylab.plot(pylab.linspace(0, simtime, len(gk.vector)), gk.vector, label='Gk (mS)')
pylab.legend()
pylab.show()
示例12: Plot_field_gp
def Plot_field_gp():
r = pl.linspace(-1.*mm,1.*mm,50)
z = pl.linspace(0,g,50)
X, Y = np.meshgrid(z, r)
for z,r in zip(np.ravel(X), np.ravel(Y)):
print z*1000,r*1000,SpaceChargeField(r,0,z,0,0,0.5*mm)*0.001
示例13: mk_grid
def mk_grid(llx, ulx, nx, lly, uly, ny):
# Get the Galaxy info
#galaxies = mk_galaxy_struc()
galaxies = pickle.load(open('galaxies.pickle','rb'))
galaxies = filter(lambda galaxy: galaxy.ston_I > 30., galaxies)
galaxies = pyl.asarray(filter(lambda galaxy: galaxy.ICD_IH < 0.5, galaxies))
# Make the low mass grid first
x = [galaxy.Mass for galaxy in galaxies]
y = [galaxy.ICD_IH *100 for galaxy in galaxies]
bins_x =pyl.linspace(llx, ulx, nx)
bins_y = pyl.linspace(uly, lly, ny)
grid = []
for i in range(bins_x.size-1):
xmin = bins_x[i]
xmax = bins_x[i+1]
for j in range(bins_y.size-1):
ymax = bins_y[j]
ymin = bins_y[j+1]
cond=[cond1 and cond2 and cond3 and cond4 for cond1, cond2, cond3,
cond4 in zip(x>=xmin, x<xmax, y>=ymin, y<ymax)]
grid.append(galaxies.compress(cond))
return grid
示例14: demo
def demo():
from pylab import hold, linspace, subplot, plot, legend, show
hold(True)
#y = [9,6,1,3,8,4,2]
#y = [9,11,13,3,-2,0,2]
y = [9, 11, 2, 3, 8, 0]
#y = [9,9,1,3,8,2,2]
x = linspace(0, 1, len(y))
t = linspace(x[0], x[-1], 400)
subplot(211)
plot(t, bspline(y, t, clamp=False), '-.y',
label="unclamped bspline") # bspline
# bspline
plot(t, bspline(y, t, clamp=True), '-y', label="clamped bspline")
plot(sorted(x), y, ':oy', label="control points")
legend()
#left, right = _derivs(t, bspline(y, t, clamp=False))
#print(left, (y[1] - y[0]) / (x[1] - x[0]))
subplot(212)
xt, yt = pbs(x, y, t, clamp=False)
plot(xt, yt, '-.b', label="unclamped pbs") # pbs
xt, yt = pbs(x, y, t, clamp=True)
plot(xt, yt, '-b', label="clamped pbs") # pbs
#xt,yt = pbs(x,y,t,clamp=True, parametric=True)
# plot(xt,yt,'-g') # pbs
plot(sorted(x), y, ':ob', label="control points")
legend()
show()
示例15: plot_elecs_and_neurons
def plot_elecs_and_neurons(neuron_dict, ext_sim_dict, neural_sim_dict):
pl.close('all')
fig_all = pl.figure(figsize=[15,15])
ax_all = fig_all.add_axes([0.1, 0.1, 0.8, 0.8], frameon=False)
for elec in xrange(len(ext_sim_dict['elec_z'])):
ax_all.plot(ext_sim_dict['elec_z'][elec], ext_sim_dict['elec_y'][elec], color='b',\
marker='$E%i$'%elec, markersize=20 )
legends = []
for i, neur in enumerate(neuron_dict):
folder = os.path.join(neural_sim_dict['output_folder'], neuron_dict[neur]['name'])
coor = np.load(os.path.join(folder,'coor.npy'))
x,y,z = coor
n_compartments = len(x)
fig = pl.figure(figsize=[10, 10])
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], frameon=False)
# Plot the electrodes
for elec in xrange(len(ext_sim_dict['elec_z'])):
ax.plot(ext_sim_dict['elec_z'][elec], ext_sim_dict['elec_y'][elec], color='b',\
marker='$%i$'%elec, markersize=20 )
# Plot the neuron
xmid, ymid, zmid = np.load(folder + '/coor.npy')
xstart, ystart,zstart = np.load(folder + '/coor_start.npy')
xend, yend, zend = np.load(folder + '/coor_end.npy')
diam = np.load(folder + '/diam.npy')
length = np.load(folder + '/length.npy')
n_compartments = len(diam)
for comp in xrange(n_compartments):
if comp == 0:
xcoords = pl.array([xmid[comp]])
ycoords = pl.array([ymid[comp]])
zcoords = pl.array([zmid[comp]])
diams = pl.array([diam[comp]])
else:
if zmid[comp] < 0.400 and zmid[comp] > -.400:
xcoords = pl.r_[xcoords, pl.linspace(xstart[comp],
xend[comp], length[comp]*3*1000)]
ycoords = pl.r_[ycoords, pl.linspace(ystart[comp],
yend[comp], length[comp]*3*1000)]
zcoords = pl.r_[zcoords, pl.linspace(zstart[comp],
zend[comp], length[comp]*3*1000)]
diams = pl.r_[diams, pl.linspace(diam[comp], diam[comp],
length[comp]*3*1000)]
argsort = pl.argsort(-xcoords)
ax.scatter(zcoords[argsort], ycoords[argsort], s=20*(diams[argsort]*1000)**2,
c=xcoords[argsort], edgecolors='none', cmap='gray')
ax_all.plot(zmid[0], ymid[0], marker='$%i$'%i, markersize=20, label='%i: %s' %(i, neur))
#legends.append('%i: %s' %(i, neur))
ax.axis(ext_sim_dict['plot_range'])
ax.axis('equal')
ax.axis(ext_sim_dict['plot_range'])
ax.set_xlabel('z [mm]')
ax.set_ylabel('y [mm]')
fig.savefig(os.path.join(neural_sim_dict['output_folder'],\
'neuron_figs', '%s.png' % neur))
ax_all.axis('equal')
ax.axis(ext_sim_dict['plot_range'])
ax_all.set_xlabel('z [mm]')
ax_all.set_ylabel('y [mm]')
ax_all.legend()
fig_all.savefig(os.path.join(neural_sim_dict['output_folder'], 'fig.png'))