本文整理汇总了Python中pylab.legend函数的典型用法代码示例。如果您正苦于以下问题:Python legend函数的具体用法?Python legend怎么用?Python legend使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了legend函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
SAMPLE_NUM = 10
degree = 9
x, y = sin_wgn_sample(SAMPLE_NUM)
fig = pylab.figure(1)
pylab.grid(True)
pylab.xlabel('x')
pylab.ylabel('y')
pylab.axis([-0.1,1.1,-1.5,1.5])
# sin(x) + noise
# markeredgewidth mew
# markeredgecolor mec
# markerfacecolor mfc
# markersize ms
# linewidth lw
# linestyle ls
pylab.plot(x, y,'bo',mew=2,mec='b',mfc='none',ms=8)
# sin(x)
x2 = linspace(0, 1, 1000)
pylab.plot(x2,sin(2*x2*pi),'#00FF00',lw=2,label='$y = \sin(x)$')
# polynomial fit
reg = exp(-18)
w = curve_poly_fit(x, y, degree,reg) #w = polyfit(x, y, 3)
po = poly1d(w)
xx = linspace(0, 1, 1000)
pylab.plot(xx, po(xx),'-r',label='$M = 9, \ln\lambda = -18$',lw=2)
pylab.legend()
pylab.show()
fig.savefig("poly_fit9_10_reg.pdf")
示例2: TestOverIntDim
def TestOverIntDim():
nDim = 10
numOfParticles = 20
maxIteration = 200
minX = array([-100.0]*nDim)
maxX = array([100.0]*nDim)
maxV = 0.2*(maxX - minX)
minV = -1.0*maxV
numOfTrial = 20
alpha = 0.0
for intDim in xrange(0,11,2):
gBest = array([0.0]*maxIteration)
for i in xrange(numOfTrial):
p1 = AUPSO.PSOProblem(nDim, numOfParticles, maxIteration, minX, maxX, minV, maxV, AUPSO.Griewank,intDim,alpha)
p1.run()
gBest = gBest + p1.gBestArray[:maxIteration]
gBest = gBest / numOfTrial
pylab.plot(range(maxIteration), log10(gBest),label='intDim='+str(intDim))
pylab.title('$G_{best}$ over 20 trials'+' alpha='+str(alpha))
pylab.xlabel('The $N^{th}$ Iteratioin')
pylab.ylabel('Average gBest over '+str(numOfTrial)+' runs')
pylab.grid(True)
# pylab.yscale('log')
ylim = [-6, 1]
ystep = 1.0
# pylab.ylim(ylim[0], ylim[1])
# yticks = linspace(ylim[0], ylim[1], int((ylim[1]-ylim[0])/ystep+1))
# pylab.yticks(tuple(yticks), tuple(map(str,yticks)))
pylab.legend(loc='lower left')
pylab.show()
示例3: param_set_averages_plot
def param_set_averages_plot(results):
averages_ocr = [
a[1] for a in sorted(
param_set_averages(results, metric='ocr').items(),
key=lambda x: int(x[0].split('-')[1]))
]
averages_q = [
a[1] for a in sorted(
param_set_averages(results, metric='q').items(),
key=lambda x: int(x[0].split('-')[1]))
]
averages_mse = [
a[1] for a in sorted(
param_set_averages(results, metric='mse').items(),
key=lambda x: int(x[0].split('-')[1]))
]
fig = plt.figure(figsize=(6, 4))
# plt.tight_layout()
plt.plot(averages_ocr, label='OCR', linewidth=2.0)
plt.plot(averages_q, label='Q', linewidth=2.0)
plt.plot(averages_mse, label='MSE', linewidth=2.0)
plt.ylim([0, 1])
plt.xlabel(u'Paslėptų neuronų skaičius')
plt.ylabel(u'Vidurinė Q įverčio pokyčio reikšmė')
plt.grid(True)
plt.tight_layout()
plt.legend(loc='lower right')
plt.show()
示例4: plotEventFlop
def plotEventFlop(library, num, eventNames, sizes, times, events, filename = None):
from pylab import legend, plot, savefig, semilogy, show, title, xlabel, ylabel
import numpy as np
arches = sizes.keys()
bs = events[arches[0]].keys()[0]
data = []
names = []
for event, color in zip(eventNames, ['b', 'g', 'r', 'y']):
for arch, style in zip(arches, ['-', ':']):
if event in events[arch][bs]:
names.append(arch+'-'+str(bs)+' '+event)
data.append(sizes[arch][bs])
data.append(1e-3*np.array(events[arch][bs][event])[:,1])
data.append(color+style)
else:
print 'Could not find %s in %s-%d events' % (event, arch, bs)
semilogy(*data)
title('Performance on '+library+' Example '+str(num))
xlabel('Number of Dof')
ylabel('Computation Rate (GF/s)')
legend(names, 'upper left', shadow = True)
if filename is None:
show()
else:
savefig(filename)
return
示例5: test_mask_LUT
def test_mask_LUT(self):
"""
The masked image has a masked ring around 1.5deg with value -10
without mask the pixels should be at -10 ; with mask they are at 0
"""
x1 = self.ai.xrpd_LUT(self.data, 1000)
# print self.ai._lut_integrator.lut_checksum
x2 = self.ai.xrpd_LUT(self.data, 1000, mask=self.mask)
# print self.ai._lut_integrator.lut_checksum
x3 = self.ai.xrpd_LUT(self.data, 1000, mask=numpy.zeros(shape=self.mask.shape, dtype="uint8"), dummy= -20.0, delta_dummy=19.5)
# print self.ai._lut_integrator.lut_checksum
res1 = numpy.interp(1.5, *x1)
res2 = numpy.interp(1.5, *x2)
res3 = numpy.interp(1.5, *x3)
if logger.getEffectiveLevel() == logging.DEBUG:
pylab.plot(*x1, label="nomask")
pylab.plot(*x2, label="mask")
pylab.plot(*x3, label="dummy")
pylab.legend()
pylab.show()
raw_input()
self.assertAlmostEqual(res1, -10., 1, msg="Without mask the bad pixels are around -10 (got %.4f)" % res1)
self.assertAlmostEqual(res2, 0., 4, msg="With mask the bad pixels are actually at 0 (got %.4f)" % res2)
self.assertAlmostEqual(res3, -20., 4, msg="Without mask but dummy=-20 the dummy pixels are actually at -20 (got % .4f)" % res3)
示例6: Doplots_monthly
def Doplots_monthly(mypathforResults,PlottingDF,variable_to_fill, Site_ID,units,item):
ANN_label=str(item+"_NN") #Do Monthly Plots
print "Doing MOnthly plot"
#t = arange(1, 54, 1)
NN_label='Fc'
Plottemp = PlottingDF[[NN_label,item]][PlottingDF['day_night']!=1]
#Plottemp = PlottingDF[[NN_label,item]].dropna(how='any')
figure(1)
pl.title('Nightime ANN v Tower by year-month for '+item+' at '+Site_ID)
try:
xdata1a=Plottemp[item].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1a=True
except:
plotxdata1a=False
try:
xdata1b=Plottemp[NN_label].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1b=True
except:
plotxdata1b=False
if plotxdata1a==True:
pl.plot(xdata1a,'r',label=item)
if plotxdata1b==True:
pl.plot(xdata1b,'b',label=NN_label)
pl.ylabel('Flux')
pl.xlabel('Year - Month')
pl.legend()
pl.savefig(mypathforResults+'/ANN and Tower plots by year and month for variable '+item+' at '+Site_ID)
#pl.show()
pl.close()
time.sleep(1)
示例7: plot_heatingrate
def plot_heatingrate(data_dict, filename, do_show=True):
pl.figure(201)
color_list = ['b','r','g','k','y','r','g','b','k','y','r',]
fmtlist = ['s','d','o','s','d','o','s','d','o','s','d','o']
result_dict = {}
for key in data_dict.keys():
x = data_dict[key][0]
y = data_dict[key][1][:,0]
y_err = data_dict[key][1][:,1]
p0 = np.polyfit(x,y,1)
fit = LinFit(np.array([x,y,y_err]).transpose(), show_graph=False)
p1 = [0,0]
p1[0] = fit.param_dict[0]['Slope'][0]
p1[1] = fit.param_dict[0]['Offset'][0]
print fit
x0 = np.linspace(0,max(x))
cstr = color_list.pop(0)
fstr = fmtlist.pop(0)
lstr = key + " heating: {0:.2f} ph/ms".format((p1[0]*1e3))
pl.errorbar(x/1e3,y,y_err,fmt=fstr + cstr,label=lstr)
pl.plot(x0/1e3,np.polyval(p0,x0),cstr)
pl.plot(x0/1e3,np.polyval(p1,x0),cstr)
result_dict[key] = 1e3*np.array(fit.param_dict[0]['Slope'])
pl.xlabel('Heating time (ms)')
pl.ylabel('nbar')
if do_show:
pl.legend()
pl.show()
if filename != None:
pl.savefig(filename)
return result_dict
示例8: plot_dat
def plot_dat(ax, file_name):
with open(file_name, 'rb') as datfile:
l=[]
for row in datfile:
if len(row.split('|')[-1].split()):
l.append(row.split('|')[-1].split())
# print row
lengend_names=l[1]
l=l[2:]
data=[]
for row in l:
for i in range(len(row)):
try:
type=row[i][-1]
row[i]=float(row[i][:-1])
if type=='G':
row[i]*=1000.0
except:
# print i
row[i]=0.
data.append([row[0]])
data=zip(*data)
data=numpy.array(data)
shape=data.transpose().shape
ax.plot(numpy.mgrid[0:shape[0]*10:10,0:1][0],
100*(data.transpose()-data.transpose()[0,0])/(1533.0+59900.0))
pylab.legend([lengend_names[0]])
pylab.ylabel('Memory (MB)')
pylab.xlabel('Time (sec)')
pylab.show()
示例9: PlotNCodonMuts
def PlotNCodonMuts(allmutations, plotfile, title):
"""Plots number of nucleotide changes per codon mutation.
allmutations -> list of all mutations as tuples (wtcodon, r, mutcodon)
plotfile -> name of the plot file we create.
title -> string giving the plot title.
"""
pylab.figure(figsize=(3.5, 2.25))
(lmargin, rmargin, bmargin, tmargin) = (0.16, 0.01, 0.21, 0.07)
pylab.axes([lmargin, bmargin, 1.0 - lmargin - rmargin, 1.0 - bmargin - tmargin])
nchanges = {1:0, 2:0, 3:0}
nmuts = len(allmutations)
for (wtcodon, r, mutcodon) in allmutations:
assert 3 == len(wtcodon) == len(mutcodon)
diffs = len([i for i in range(3) if wtcodon[i] != mutcodon[i]])
nchanges[diffs] += 1
barwidth = 0.6
xs = [1, 2, 3]
nactual = [nchanges[x] for x in xs]
nexpected = [nmuts * 9. / 63., nmuts * 27. / 63., nmuts * 27. / 63.]
bar = pylab.bar([x - barwidth / 2.0 for x in xs], nactual, width=barwidth)
pred = pylab.plot(xs, nexpected, 'rx', markersize=6, mew=3)
pylab.gca().set_xlim([0.5, 3.5])
pylab.gca().set_ylim([0, max(nactual + nexpected) * 1.1])
pylab.gca().xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(4))
pylab.gca().yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(5))
pylab.xlabel('nucleotide changes in codon')
pylab.ylabel('number of mutations')
pylab.legend((bar[0], pred[0]), ('actual', 'expected'), loc='upper left', numpoints=1, handlelength=0.9, borderaxespad=0, handletextpad=0.4)
pylab.title(title, fontsize=12)
pylab.savefig(plotfile)
time.sleep(0.5)
pylab.show()
示例10: main
def main():
amps = [0.167e-9,
0.25e-9,
0.333e-9]
model_dict = setup_model()
for ii, a in enumerate(amps):
do_sim(model_dict['stimulus'], a)
config.logger.info('##### %d' % (model_dict['tab_vm'].size))
vm = model_dict['tab_vm'].vector
inject = model_dict['tab_stim'].vector.copy()
t = np.linspace(0, simtime, len(vm))
fname = 'data_fig_a3_%s.txt' % (chr(ord('A')+ii))
np.savetxt(fname,
np.vstack((t, inject, vm)).transpose())
msg = 'Saved data for %g A current pulse in %s' % (a, fname)
config.logger.info(msg)
print(msg)
pylab.subplot(3,1,ii+1)
pylab.title('%g nA' % (a*1e9))
pylab.plot(t, vm, label='soma-Vm (mV)')
stim_boundary = np.flatnonzero(np.diff(inject))
pylab.plot((t[stim_boundary[0]]), (vm.min()), 'r^', label='stimulus start')
pylab.plot((t[stim_boundary[-1]]), (vm.min()), 'gv', label='stimulus end')
pylab.legend()
pylab.savefig('fig_a3.png')
pylab.show()
示例11: simulationWithoutDrug
def simulationWithoutDrug(numViruses, maxPop, maxBirthProb, clearProb,
numTrials):
"""
Run the simulation and plot the graph for problem 3 (no drugs are used,
viruses do not have any drug resistance).
For each of numTrials trial, instantiates a patient, runs a simulation
for 300 timesteps, and plots the average virus population size as a
function of time.
numViruses: number of SimpleVirus to create for patient (an integer)
maxPop: maximum virus population for patient (an integer)
maxBirthProb: Maximum reproduction probability (a float between 0-1)
clearProb: Maximum clearance probability (a float between 0-1)
numTrials: number of simulation runs to execute (an integer)
"""
# TODO
steps = 300
trialResults = [[] for s in range(steps)]
for i in range(numTrials):
viruses = [SimpleVirus(maxBirthProb,clearProb) for v in range(numViruses)]
patient = Patient(viruses, maxPop)
for step in range(300):
trialResults[step].append(patient.update())
resultsSummary = [sum(l) / float(numTrials) for l in trialResults]
pylab.plot(resultsSummary, label="Total Virus Population")
pylab.title("SimpleVirus simulation")
pylab.xlabel("Time Steps")
pylab.ylabel("Average Virus Population")
pylab.legend()
pylab.show()
示例12: plot_datasets
def plot_datasets(dataset_ids, title=None, legend=True, labels=True):
"""
Plots one or more dataset.
:param dataset_ids: list of datasets to plot
:type dataset_ids: list of integers
:param title: title of the plot
:type title: string
:param legend: whether or not to show legend
:type legend: boolean
:param labels: whether or not to plot point labels
:type labels: boolean
"""
title = title if title else "Datasets " + ",".join(
[str(d) for d in dataset_ids])
pl.title(title)
data = {k: v for k, v in npoints.items() if k in dataset_ids}
lines = [pl.plot(zip(*p)[0], zip(*p)[1], 'o-')[0] for p in data.values()]
if legend:
pl.legend(lines, data.keys())
if labels:
for x, y, l in [i for s in data.values() for i in s]:
pl.annotate(str(l), xy=(x, y), xytext=(x, y + 0.1))
pl.grid(True)
return pl
示例13: plotMonthlyTrend
def plotMonthlyTrend(keywords, title, monthList):
db = mysql(host, user, passwd, dbName)
db.connect()
allKeywordTrend = []
for k in keywords:
allCount = []
for m in monthList:
rows = db.getMonthlyKeywordCount(k, m)
print rows
count = 0
for r in rows:
count += r[0]
persent = count*1.0
cc = db.getMonthlyTweetCount(m)
if cc == 0:
persent = 0.0
else:
persent /= cc
allCount.append(persent)
allKeywordTrend.append(allCount)
db.close()
for p in allKeywordTrend:
pylab.plot(range(1, len(p)+1), p)
pylab.title(title)
pylab.legend(keywords)
pylab.xlabel("month")
pylab.ylabel("frequency of occurrence")
pylab.show()
示例14: RosenbrockTest
def RosenbrockTest():
nDim = 3
numOfParticles = 20
maxIteration = 200
minX = array([-5.0]*nDim)
maxX = array([5.0]*nDim)
maxV = 0.2*(maxX - minX)
minV = -1.0*maxV
numOfTrial = 20
gBest = array([0.0]*maxIteration)
for i in xrange(numOfTrial):
p1 = RPSO.PSOProblem(nDim, numOfParticles, maxIteration, minX, maxX, minV, maxV, RPSO.Rosenbrock)
p1.run()
gBest = gBest + p1.gBestArray[:maxIteration]
gBest = gBest / numOfTrial
pylab.title('$G_{best}$ over 20 trials')
pylab.xlabel('The $N^{th}$ Iteratioin')
pylab.ylabel('Average gBest over '+str(numOfTrial)+' runs (logscale)')
pylab.grid(True)
# pylab.yscale('log')
ymin, ymax = -1.5, 2.5
ystep = 0.5
pylab.ylim(ymin, ymax)
yticks = linspace(ymin, ymax, (ymax-ymin)/ystep+1)
pylab.yticks(tuple(yticks),tuple(map(str,yticks)))
pylab.plot(range(maxIteration), log10(gBest),'-', label='Global best')
pylab.legend()
pylab.show()
示例15: rmsdSpreadSubplot
def rmsdSpreadSubplot(multiplier=1.0, layout=(-1, -1)):
rmsd_data = dict( (e, rad_data[e]['innov'][quant]) for e in rad_data.iterkeys() )
spread_data = dict( (e, rad_data[e]['spread'][quant]) for e in rad_data.iterkeys() )
times = temp.getTimes()
n_t = len(times)
for exp, exp_name in exp_names.iteritems():
pylab.plot(sawtooth(times, times)[:(n_t + 1)], rmsd_data[exp][:(n_t + 1)], color=colors[exp], linestyle='-')
pylab.plot(times[(n_t / 2):], rmsd_data[exp][n_t::2], color=colors[exp], linestyle='-')
for exp, exp_name in exp_names.iteritems():
pylab.plot(sawtooth(times, times)[:(n_t + 1)], spread_data[exp][:(n_t + 1)], color=colors[exp], linestyle='--')
pylab.plot(times[(n_t / 2):], spread_data[exp][n_t::2], color=colors[exp], linestyle='--')
ylim = pylab.ylim()
pylab.plot(times, -1 * np.ones((len(times),)), color='#999999', linestyle='-', label="RMS Innovation")
pylab.plot(times, -1 * np.ones((len(times),)), color='#999999', linestyle='--', label="Spread")
pylab.axhline(y=7, color='k', linestyle=':')
pylab.axvline(x=14400, color='k', linestyle=':')
pylab.ylabel("RMS Innovation/Spread (dBZ)", size='large')
pylab.xlim(times[0], times[-1])
pylab.ylim(ylim)
pylab.legend(loc=4)
pylab.xticks(times[::2], [ "" for t in times[::2] ])
pylab.yticks(size='x-large')
return