本文整理汇总了Python中pylab.imread函数的典型用法代码示例。如果您正苦于以下问题:Python imread函数的具体用法?Python imread怎么用?Python imread使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了imread函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
img = img_as_float(imread("HJoceanSmall.png"))
img_seam_v = img_as_float(imread("HJoceanSmall.png"))
img_transformed_v = img_as_float(imread("HJoceanSmall.png"))
iterations = 20
img_seam_v, img_transformed_v = seam_carve(iterations, img_seam_v, img_transformed_v)
figure()
subplot(221)
imshow(img)
title("1. Original")
subplot(222)
imshow(img_seam_v)
title("2. Seam carved vertical")
# Transposed Image
img_seam_hv = img_transformed_v.transpose(1, 0, 2)
img_transformed_hv = img_transformed_v.transpose(1, 0, 2)
iterations = 20
img_seam_hv, img_transformed_hv = seam_carve(iterations, img_seam_hv, img_transformed_hv)
subplot(223)
imshow(img_seam_hv.transpose(1, 0, 2))
title("3. Seam carved horizontal")
subplot(224)
imshow(img_transformed_hv.transpose(1, 0, 2))
title("4. Transformed Image")
show()
示例2: find_movement
def find_movement():
# img = imread('shot1.jpg')
# img2 = imread('shot2.jpg')
img = imread("frame0.jpg")
img2 = imread("frame2.jpg")
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
img1 = img_as_float(img1)
img2 = img_as_float(img2)
# print img1
h1, w1 = img1.shape
h2, w2 = img2.shape
img3 = zeros((h1, w1))
for x in range(0, h1 - 1):
for y in range(0, w1 - 1):
if abs(img1[x, y] - img2[x, y]) > 0.01:
# print img1[x, y], " ", img2[x, y]
img3[x, y] = 1
figure()
# subplot(1, 2, 1), imshow(img)
# subplot(1, 2, 2), \
imshow(img3)
show()
示例3: AnalyseNSS
def AnalyseNSS(self):
if self.Mode=="Manual":
files=QFileDialog(self)
files.setWindowTitle('Non-Synchronised Segment Stripes')
self.CurrentImages=files.getOpenFileNames(self,caption='Non-Synchronised Segment Stripes')
SSSDlg1=SSSDlg.SSSWidget(self)
SSSDlg1.Img1=DCMReader.ReadDCMFile(str(self.CurrentImages[0]))
SSSDlg1.SSS1.axes.imshow(SSSDlg1.Img1,cmap='gray')
SSSDlg1.Img2=DCMReader.ReadDCMFile(str(self.CurrentImages[1]))
SSSDlg1.SSS2.axes.imshow(SSSDlg1.Img2,cmap='gray')
SSSDlg1.Img3=DCMReader.ReadDCMFile(str(self.CurrentImages[2]))
SSSDlg1.SSS3.axes.imshow(SSSDlg1.Img3,cmap='gray')
SSSDlg1.Img4=DCMReader.ReadDCMFile(str(self.CurrentImages[3]))
SSSDlg1.SSS4.axes.imshow(SSSDlg1.Img4,cmap='gray')
SSSDlg1.ImgCombi=SSSDlg1.Img1+SSSDlg1.Img2+SSSDlg1.Img3+SSSDlg1.Img4
SSSDlg1.SSSCombi.axes.imshow(SSSDlg1.ImgCombi,cmap='gray')
EPIDType=np.shape(SSSDlg1.Img1)
pl.imsave('NSS.jpg',SSSDlg1.ImgCombi)
Img1=pl.imread('NSS.jpg')
if EPIDType[0]==384:
Img2=pl.imread('NSSOrgRefas500.jpg')
else:
Img2=pl.imread('NSSOrgRef.jpg')
self.MSENSS=np.round(self.mse(Img1,Img2))
if self.Mode=="Manual":
SSSDlg1.exec_()
示例4: computeImageDifferences
def computeImageDifferences(numPictures):
first = rgb2gray(pl.imread("reference/0.png"))
others = []
for num in xrange(1, numPictures + 1):
others.append(rgb2gray(pl.imread("reference/%d.png" % num)))
print num
result = np.array(others) - first
#pickle.dump(result, open("computeImageDifference.pickle", "w"))
return result
示例5: computePhaseFirstThree
def computePhaseFirstThree(folder):
import math
#transformation = np.vectorize(math.sqrt)
#transformation = np.vectorize(lambda x: x ** 2)
transformation = np.vectorize(lambda x: x) # identity
im1 = transformation(rgb2gray(pl.imread("%s/0.png" % folder)))
im2 = transformation(rgb2gray(pl.imread("%s/1.png" % folder)))
im3 = transformation(rgb2gray(pl.imread("%s/2.png" % folder)))
result = images.computePhase(im1, im2, im3)
pickle.dump(result, open("%s.pickle" % folder, "w"))
示例6: load_img
def load_img(path = 'data/rjp_small.png', gray=True):
try:
x = pylab.imread(path)
except:
x = pylab.imread('../' + path)
if len(x.shape) > 2 and gray:
x = x[:, :, 2]
if len(x.shape) > 2 and x.shape[2] == 4:
x = x[:,:,:3]
if x.max() > 1:
x = x.astype('float') / 257.0
return x
示例7: load
def load(self, uri):
filename = self.get(uri)
if isimg(filename):
obj = pylab.imread(filename)
elif ishdf5(filename):
f = h5py.File(filename, 'r')
obj = f[self.key(filename)].value # FIXME: lazy evaluation?
else:
try:
obj = pylab.imread(filename)
except:
raise CacheError('[bobo.cache][ERROR]: unsupported object type for loading key "%s" ' % self.key(uri))
return obj
示例8: test_file_image
def test_file_image(fname):
ext = os.path.splitext(fname)[-1][len(os.path.extsep):]
kwargs = to_dict_params(fname)
# Creates the image in memory
mem = BytesIO()
fractal_data = call_kw(generate_fractal, kwargs)
imsave(mem, fractal_data, cmap=kwargs["cmap"], format=ext)
mem.seek(0) # Return stream position back for reading
# Comparison pixel-by-pixel
img_file = imread("images/" + fname)
img_mem = imread(mem, format=ext)
assert img_file.tolist() == img_mem.tolist()
示例9: load_descs
def load_descs(config, i, norm=1, old_desc=False, invert_mask=False, use_masks2=0):
fname = config.desc_filename(i)
mask_name = config.mask_filename(i)
mask = pylab.imread(mask_name)
descs = load_ndesc_pc(fname, norm=norm, old_desc=old_desc)
if use_masks2==0:
descs = [l for l in descs if bool(mask[l.v,l.u])!=bool(invert_mask)]
elif use_masks2==1:
mask2 = pylab.imread(config.mask2_filename(i))
descs = [l for l in descs if bool(mask2[l.v,l.u])]
elif use_masks2==2:
mask2 = pylab.imread(config.mask2_filename(i))
descs = [l for l in descs if not(mask2[l.v,l.u].astype('bool')) and mask[l.v,l.u].astype('bool')]
return descs
示例10: myimread
def myimread(imgname,flip=False,resize=None):
"""
read an image
"""
img=None
if imgname.split(".")[-1]=="png":
img=pylab.imread(imgname)
else:
img=numpy.ascontiguousarray(pylab.imread(imgname)[::-1])
if flip:
img=numpy.ascontiguousarray(img[:,::-1,:])
if resize!=None:
from scipy.misc import imresize
img=imresize(img,resize)
return img
示例11: test_with_file
def test_with_file(fn):
im = pylab.imread(fn)
if im.ndim > 2:
im = numpy.mean(im[:, :, :3], 2)
pylab.imsave("intermediate.png", im, vmin=0, vmax=1., cmap=pylab.cm.gray)
r = test_inline(im)
return r
示例12: __init__
def __init__(self, path, waveaxis=None, regions=None, start=None, end=None):
""" SpectrumImage(path[, waveaxis[, regions]]) initializes a new
spectrum image from the specified image path.
Upon initialization, the image is read in to a numpy ndarray, this
method currently assumes that 2 of the three color channels are
redundant and eliminates them. At the time of initialization, the
wavelength axis (0 - columns, 1 - rows) may be specified as well
as a tuple of lists representing regions in the form [min, max].
"""
self.image = pylab.imread(path)
self.image = self.image[:,:,0]
self.start = start
self.end = end
self.regions = []
if waveaxis is 0 or waveaxis is 1:
self.waveaxis = waveaxis
for region in regions:
bounds = self._validateregion([region['min'], region['max']])
try:
self.regions.append({'min': bounds[0], 'max': bounds[1],
'group': region['group']})
except TypeError:
pass
elif waveaxis is not None:
raise ValueError('If the wavelength axis is specified it must',
'be 0 or 1.')
示例13: extract_features
def extract_features(image_path_list):
feature_list = []
for image_path in image_path_list:
features = []
image_array = imread(image_path)
# Note: Looping through multiple filters for edge detection drastically slows
# Down the feature extraction while only marginally improving performance, thus
# it is left out for the HW submission
# for ax in [0,1]:
# for pct in [.01, .02]:
emat = featureExtractor.getEdgeMatrix(image_array, sigpercent=.01, \
axis=0)
features.append( featureExtractor.getEdgePercent(image_array, emat) )
features.append( featureExtractor.getNumMeridialEdges(emat) )
features.append( featureExtractor.getNumEquatorialEdges(emat) )
features.append( featureExtractor.getSize(image_array) )
features.append( featureExtractor.getCentralRatio(image_array) )
features.append( featureExtractor.getCentralRatio(emat) )
features.append( featureExtractor.getMeanColorVal(image_array, 0) )
features.append( featureExtractor.getMeanColorVal(image_array, 1) )
features.append( featureExtractor.getMeanColorVal(image_array, 2) )
features.append( featureExtractor.getVariance( image_array, 0 ) )
features.append( featureExtractor.getVariance( image_array, 1 ) )
features.append( featureExtractor.getVariance( image_array, 2 ) )
xr, yr = featureExtractor.getCOM(image_array, 0)
features.append(xr)
features.append(yr)
xg, yg = featureExtractor.getCOM(image_array, 1)
features.append(xg)
features.append(yg)
xb, yb = featureExtractor.getCOM(image_array, 2)
features.append(xb)
features.append(yb)
feature_list.append([image_path, features])
return feature_list
示例14: read_tiff
def read_tiff(fname,res_x,res_y,pix_x,pix_y,ext_x,ext_y):
# get array numbers
img=pl.imread(fname)
if len(img.shape)==2:
img_arraynum=1
else:
img_arraynum=img.shape[2]
#collapse accordingly
if img_arraynum == 4:
imgmat=numpy.multiply(img[:,:,0]+img[:,:,1]+img[:,:,2],img[:,:,3])
elif img_arraynum == 1:
imgmat = img
else:
print "Image has %d arrays, unhandled." % img_arraynum
exit(0)
### convert data to float64
imgmat = numpy.array(imgmat,dtype=numpy.float64)
### image parameters
pix_x = imgmat.shape[1]
pix_y = imgmat.shape[0]
ext_x = pix_x * res_x
ext_y = pix_y * res_y
### convert to linear
imgmat = convert2lin(imgmat,latitude,sensitivity)
### return final image
return imgmat,res_x,res_y,pix_x,pix_y,ext_x,ext_y
示例15: main
def main():
s = 2.0
img = imread('cameraman.png')
# Create all the images with each a differen order of convolution
img1 = gD(img, s, 0, 0)
img2 = gD(img, s, 1, 0)
img3 = gD(img, s, 0, 1)
img4 = gD(img, s, 2, 0)
img5 = gD(img, s, 0, 2)
img6 = gD(img, s, 1, 1)
fig = plt.figure()
ax1 = fig.add_subplot(2, 3, 1)
ax1.set_title("Fzero")
ax1.imshow(img1, cmap=cm.gray)
ax2 = fig.add_subplot(2, 3, 2)
ax2.set_title("Fx")
ax2.imshow(img2, cmap=cm.gray)
ax3 = fig.add_subplot(2, 3, 3)
ax3.set_title("Fy")
ax3.imshow(img3, cmap=cm.gray)
ax4 = fig.add_subplot(2, 3, 4)
ax4.set_title("Fxx")
ax4.imshow(img4, cmap=cm.gray)
ax5 = fig.add_subplot(2, 3, 5)
ax5.set_title("Fyy")
ax5.imshow(img5, cmap=cm.gray)
ax6 = fig.add_subplot(2, 3, 6)
ax6.set_title("Fxy")
ax6.imshow(img6, cmap=cm.gray)
show()