本文整理汇总了Python中pylab.hold函数的典型用法代码示例。如果您正苦于以下问题:Python hold函数的具体用法?Python hold怎么用?Python hold使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了hold函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_bars
def plot_bars(pos_count, title='', max_pathway_length=8, legend_loc='upper right'):
n_labels = len(pos_count)
ind = np.arange(max_pathway_length)
width = 0.2
fig = pylab.figure()
pylab.hold(True)
ax = fig.add_subplot(111)
colors = {'No known regulation':'grey', 'Activated':'green', 'Inhibited':'red', 'Mixed regulation':'blue'}
plot_order = ['Inhibited', 'Mixed regulation', 'Activated', 'No known regulation']
i = 0
for label in plot_order:
curr_vals = pos_count[label][1:max_pathway_length+1]
if (sum(curr_vals) < 20):
n_labels -= 1
continue
ax.bar(ind + i * width, tuple([j * 1.0 /sum(curr_vals) for j in curr_vals]), width, color=colors[label], label=('%s (%d)' % (label, sum(curr_vals))))
i += 1
ax.set_ylabel('Fraction of reactions per type')
ax.set_xlabel('Position in pathway')
ax.set_xticks(ind+ width * n_labels/2)
ax.set_xticklabels( ind + 1 )
legendfont = matplotlib.font_manager.FontProperties(size=11)
pylab.legend(loc=legend_loc, prop=legendfont)
pylab.title(title)
pylab.hold(False)
return fig
示例2: plot_coord_mapping
def plot_coord_mapping(mapper,sheet,style='b-'):
"""
Plot a coordinate mapping for a sheet.
Given a CoordinateMapperFn (as for a CFProjection) and a sheet
of the projection, plot a grid showing where the sheet's units
are mapped.
"""
from pylab import plot,hold,ishold
xs = sheet.sheet_rows()
ys = sheet.sheet_cols()
hold_on = ishold()
if not hold_on:
plot()
hold(True)
for y in ys:
pts = [mapper(x,y) for x in xs]
plot([u for u,v in pts],
[v for u,v in pts],
style)
for x in xs:
pts = [mapper(x,y) for y in ys]
plot([u for u,v in pts],
[v for u,v in pts],
style)
hold(hold_on)
示例3: _test_graph
def _test_graph():
i = 10000
x = np.linspace(0,3.7*pi,i)
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
np.random.randn(i))
y *= -1
x = range(i)
_max, _min = peakdetect(y,x,750, 0.30)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
plot = pylab.plot(x,y)
pylab.hold(True)
pylab.plot(xm, ym, 'r+')
pylab.plot(xn, yn, 'g+')
_max, _min = peak_det_bad.peakdetect(y, 0.7, x)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
pylab.plot(xm, ym, 'y*')
pylab.plot(xn, yn, 'k*')
pylab.show()
示例4: estimateHarness
def estimateHarness( delta = 1e-1,
alpha = .0,
num_samples=10,
Tf_sample = Tf ):
#Load all the simulated trajectories
file_name = os.path.join(RESULTS_DIR,
'OU_Xs.a=%.3f_N=%d.npy'%(alpha,
num_samples));
trajectoryBank = load(file_name)
#Select an arbitrary trajectory: (here the 2nd)
figure(); hold(True);
n_thin = int(delta / dt); print n_thin
N_sample = int(Tf_sample / dt)
# for idx in xrange(1,10):
# for idx in [2]: #xrange(3,4):
for idx in xrange(1,num_samples+1):
ts, Xs = trajectoryBank[:N_sample,0], trajectoryBank[:N_sample,idx]
#Select sampling rate:
#Generate sampled data, by sub-sampling the fine trajectory:
ts_thin = ts[::n_thin];
Xs_thin = Xs[::n_thin];
#Obtain estimator
# est_params = estimateParams(Xs_thin, delta)
# print 'est original: %.4f,%.4f, %.4f'%(est_params[0],est_params[1],est_params[2])
est_params = estimateParamsBeta(Xs_thin, delta, alpha)
print 'est reduced: %.4f,%.4f, %.4f'%(est_params[0],est_params[1],est_params[2])
plot(ts_thin, Xs_thin);
print 'true param values:', [mu, beta, sigma]
示例5: plot_arm_speed
def plot_arm_speed(axis, startTime=-1):
rootName = 'siemensSensors'
f = netcdf.netcdf_file(rootName+'Data.nc', 'r')
data1 = f.variables[rootName+'.data.'+'carouselSpeedSetpoint'].data[startSample:]
data2 = f.variables[rootName+'.data.'+'carouselSpeedSmoothed'].data[startSample:]
ts_trigger = f.variables[rootName+'.data.ts_trigger'].data[startSample:]*1.0e-9
# Load the actual arm speed from the arm gyro
rootName = 'armboneLisaSensors'
fiile = netcdf.netcdf_file(rootName+'Data.nc', 'r')
rawdata4 = fiile.variables['armboneLisaSensors.GyroState.gr'].data[startSample:]
ts_trigger4 = fiile.variables['armboneLisaSensors.GyroState.ts_trigger'].data[startSample:]*1.0e-9
#fullscale = 2000 # deg/sec
#data4 = -1.0 * rawdata4 / (2**15) * fullscale * pi/180 - 0.0202 # Rad/s
data4 = rawdata4
if startTime == -1:
startTime = ts_trigger[0]
times = ts_trigger-startTime
times4 = ts_trigger4-startTime
pylab.hold(True)
plot(times, data2, '.-', label='On Motor Side of Belt')
plot(times4, data4,'.-', label='From Gyro on Arm')
plot(times, data1, '.-', label='Setpoint (Echoed)')
ylabel('Arm rotation speed [Rad/s]')
xlabel('Time [s]')
#legend(['Setpoint (Echoed)', 'Setpoint (Sent)', 'On Motor Side of Belt', 'From Gyro on Arm'])
title('Plot of Signals Related to Arm Speed')
return startTime
示例6: DRIVplot
def DRIVplot(folder,keys):
T = 281
APiterator = [5,10]
AP = Analysis.AnalyseFile()
P = Analysis.AnalyseFile()
if folder[0]['IVtemp'] == T:
scale = 1e6
plt.hold(True)
plt.title('NLIV in P and AP at ' + str(T) + 'K')
plt.xlabel('Current ($\mu$A)')
plt.ylabel('V$_{NL}$ ($\mu$V)')
for f in folder:
if f['iterator'] in APiterator:
AP.add_column(f.Voltage,str(f['iterator']))
else:
P.add_column(f.Voltage,str(f['iterator']))
AP.apply(func,0,replace=False,header='Mean NLVoltage')
P.apply(func,0,replace=False,header='Mean NLVoltage')
I = numpy.arange(-295e-6,295e-6,1e-6)
ap = interpolate.interp1d(f.column('Current'),AP.column('Mean NLV'))
p = interpolate.interp1d(f.column('Current'),P.column('Mean NLV'))
print P
plt.title(' ',verticalalignment='bottom')
plt.xlabel('Current ($\mu$A)')
#plt.ylabel('V$_{NL}$/|I| (V/A)')
plt.ylabel('$\Delta$V$_{NL}$/|I| (mV/A)')
plt.plot(f.column('Current')*scale,1e3*(P.column('Mean NLV')-AP.column('Mean NLV'))/abs(f.column('Current')),label =''+str(T)+ ' K')
#plt.plot(f.column('Current')*scale,1e3*(P.column('Mean NLV'))/abs(f.column('Current')),label ='P at '+str(T)+ ' K')
#plt.plot(f.column('Current')*scale,1e3*(AP.column('Mean NLV'))/abs(f.column('Current')),label ='AP at '+str(T)+ ' K')
plt.legend(loc='upper left')
else:
return 1
示例7: NormDeltaRvT
def NormDeltaRvT(folder,keys):
if folder[0]['IVtemp']<250 and folder[0]['IVtemp']>5:
APiterator = [5,10]
AP = Analysis.AnalyseFile()
P = Analysis.AnalyseFile()
tsum = 0.0
for f in folder:
if f['iterator'] in APiterator:
AP.add_column(f.column('Voltage'),str(f['iterator']))
else:
P.add_column(f.column('Voltage'),str(f['iterator']))
tsum = tsum + f['Sample Temp']
AP.apply(func,0,replace=False,header='Mean NLV')
AP.add_column(f.Current,column_header = 'Current')
P.apply(func,0,replace=False,header='Mean NLV')
P.add_column(f.Current,column_header = 'Current')
APfit= AP.curve_fit(quad,'Current','Mean NLV',bounds=lambda x,y:x,result=True,header='Fit',asrow=True)
Pfit = P.curve_fit(quad,'Current','Mean NLV',bounds=lambda x,y:x,result=True,header='Fit',asrow=True)
DeltaR = Pfit[2] - APfit[2]
ErrDeltaR = numpy.sqrt((Pfit[3]**2)+(APfit[3]**2))
Spinsig.append(DeltaR/Res_Cu(tsum/10))
Spinsig_error.append(ErrDeltaR)
Temp.append(tsum/10)
plt.hold(True)
plt.title('$\Delta$R$_s$ vs T from linear coef of\nNLIV fit for '+f['Sample ID'],verticalalignment='bottom')
plt.xlabel('Temperture (K)')
plt.ylabel(r'$\Delta$R$_s$/$\rho$')
plt.errorbar(f['IVtemp'],1e3*DeltaR,1e3*ErrDeltaR,ecolor='k',marker='o',mfc='r', mec='k')
#plt.plot(f['IVtemp'],ErrDeltaR,'ok')
return Temp, Spinsig
示例8: _smooth_demo
def _smooth_demo():
from numpy import linspace, sin, ones
from pylab import subplot, plot, hold, axis, legend, title, show, randn
t = linspace(-4, 4, 100)
x = sin(t)
xn = x + randn(len(t)) * 0.1
y = smooth(x)
ws = 31
subplot(211)
plot(ones(ws))
windows = ["flat", "hanning", "hamming", "bartlett", "blackman"]
hold(True)
for w in windows[1:]:
eval("plot(" + w + "(ws) )")
axis([0, 30, 0, 1.1])
legend(windows)
title("The smoothing windows")
subplot(212)
plot(x)
plot(xn)
for w in windows:
plot(smooth(xn, 10, w))
l = ["original signal", "signal with noise"]
l.extend(windows)
legend(l)
title("Smoothing a noisy signal")
show()
示例9: plotResults
def plotResults(self, titlestr="", ylimits=[0.5,1.05], plotfunc = pl.semilogx, ylimitsB=[0,101],
legend_loc=3, show=True ):
pl.figure(num=None, figsize=(15,5))
xvals = range(1, (1+len(self.removed)) )
#Two subplots. One the left is the test accuracy vs. iteration
pl.subplot(1,2,1)
plotfunc(xvals, self.test_acc_list, "b", label="Test Accuracy")
pl.hold(True)
plotfunc(xvals, self.getRollingAvgTestAcc(window_size=10), "r", label="Test Acc (rolling avg)")
plotfunc(xvals, self.getRollingAvgTrainAcc(window_size=10), "g--", label="Train Acc (rolling avg)")
pl.ylim(ylimits)
if titlestr == "":
pl.title("Iterative Feature Removal")
else:
pl.title(titlestr)
pl.ylabel("Test Accuracy")
pl.xlabel("Iteration")
pl.legend(loc=legend_loc) #3=lower left
pl.hold(False)
#second subplot. On the right is the number of features removed per iteration
pl.subplot(1,2,2)
Ns = [ len(lst) for lst in self.removed ]
pl.semilogx(xvals, Ns, "bo", label="#Features per Iteration")
pl.xlabel("Iteration")
pl.ylabel("Number of Features Selected")
pl.title("Number of Features Removed per Iteration")
pl.ylim(ylimitsB)
pl.subplots_adjust(left=0.05, bottom=0.15, right=0.95, top=0.90, wspace=0.20, hspace=0.20)
if show: pl.show()
示例10: plotRes_varyingTrees
def plotRes_varyingTrees( data_dict, dataset_name, max_correct=3000 , show=True):
'''
Plots the results of a varyingNumTrees() experiment, using a dictionary
structure to hold the data. See the loadRes_varyingTrees() comments on the
dictionary layout.
'''
xvals = data_dict['NumTrees']
#prox forest trials
pf_avg = data_dict['PF'].mean(axis=0)
pf_std = data_dict['PF'].std(axis=0)
pf_95_conf = 1.96 * pf_std / math.sqrt(data_dict['PF'].shape[0])
#kdt forest trials
kdt_avg = data_dict['KDT'].mean(axis=0)
kdt_std = data_dict['KDT'].std(axis=0)
kdt_95_conf = 1.96 * kdt_std / math.sqrt(data_dict['KDT'].shape[0])
#plot average results of each, bounded by lower and upper bounds of 95% conf intv
pl.hold(True)
pl.errorbar(xvals, pf_avg/max_correct, yerr=pf_95_conf/max_correct, fmt='-r',
label="PF")
pl.errorbar(xvals, kdt_avg/max_correct, yerr=kdt_95_conf/max_correct, fmt='-.b',
label="KDT")
pl.ylim([0,1.05])
pl.title(dataset_name)
pl.xlabel("Number of Trees in Forest")
pl.ylabel("Percent Correct")
pl.legend(loc='lower right')
if show: pl.show()
示例11: test_radial_profiles
def test_radial_profiles():
arr = random_periodic_upsample(128, 16, seed=0)
mask = np.zeros(arr.shape, dtype=np.bool_)
arr_x = vcalc.cderivative(arr, 'X_DIR')
arr_y = vcalc.cderivative(arr, 'Y_DIR')
arr_div = np.sqrt(arr_x**2 + arr_y**2)
surf = _cp.TopoSurface(arr)
rprofs = radial_profiles(surf, threshold=25, expand_regions=1, other_arr=arr_div, mask=mask)
arr[mask] = 2 * arr.max()
pl.imshow(arr, interpolation='nearest')
pl.figure()
pl.imshow(arr_div)
pl.figure()
pl.hold(True)
linreg_xy = ([], [])
for minmax, (rprof, region) in rprofs.items():
# minmax_flux = arr_div[minmax]
pts, fluxes, avg_fluxes, avg_fluxes_errs, avg_dists, avg_dists_errs = \
zip(*rprof)
linreg_xy[0].extend(fluxes)
linreg_xy[1].extend(avg_fluxes)
# fluxes = np.abs(np.array(fluxes) - minmax_flux)
# avg_fluxes = np.abs(np.array(avg_fluxes) - minmax_flux)
# pl.plot(avg_dists, avg_fluxes, 'd-')
pl.plot(avg_dists, avg_fluxes, 'd-')
pl.grid()
slope, intercept, rval, pval, stderr = stats.linregress(*linreg_xy)
print
print "slope: %f" % slope
print "intercept: %f" % intercept
print "rval: %f" % rval
print "pval: %f" % pval
print "stderr: %f" % stderr
import pdb; pdb.set_trace()
示例12: Wave2DShow
def Wave2DShow(ufield, ds, vel=None, vmin=None, vmax=None):
r"""
Show a 2D pressure field at some instant of time.
As background is shown velocity field.
Same dimension as ufield.
* ufield : 2d pressure field at an instant of time
* ds : space discretization
* vel : 2d background velocity field
* vmin/vmax : vmin/vmax of imshow
"""
#max index time and max index space
maxt = np.shape(snapshots)[0]
maxk = np.shape(snapshots)[1]
maxi = np.shape(snapshots)[2]
print "vmin : ", vmin, "vmax : ", vmax
# space axis starting at 0 in x and z (using y coz' plotting)
# extents of the picture,
xmin, xmax = 0, ds*maxi
ymin, ymax = 0, ds*maxk
extent= xmin, xmax, ymax, ymin
py.hold(True)
if not vel == None:
py.imshow(vel, interpolation='bilinear', cmap=cm.jet, extent=extent, origin='upper', aspect='auto')
py.imshow(ufield, interpolation='bilinear', cmap=cm.Greys_r, alpha=0.8, extent=extent, origin='upper', aspect='auto', vmin=vmin, vmax=vmax)
py.hold(False)
# optional cmap=cm.jet, apect='auto' adjust aspect to the previous plot
py.show()
示例13: plot_the_overview
def plot_the_overview(samples, i, j, output_image_file):
pylab.hold(True)
pylab.scatter(samples[:,i], samples[:,j])
pylab.draw()
pylab.savefig(output_image_file, dpi=150)
pylab.close()
示例14: pinwheel_overlay
def pinwheel_overlay(pinwheels, contours=None, style='wo',linewidth=1,mmap=None):
"""
Plots the pinwheel locations and optionally the real and imaginary
pinwheel contours. Designed to be overlayed over an OR map.
"""
fig = plt.figure(frameon=False)
fig.patch.set_alpha(0.0)
ax = plt.subplot(111, aspect='equal', frameon=True)
ax.patch.set_alpha(0.0)
plt.hold(True)
plt.imshow(mmap,cmap='hsv',extent=(0, 1.0, 0, 1.0))
(recontours, imcontours) = contours if contours else ([],[])
for recontour in recontours:
plt.plot(recontour[:,0], recontour[:,1],'k',linewidth=linewidth)
for imcontour in imcontours:
plt.plot(imcontour[:,0], imcontour[:,1],'w', linewidth=linewidth)
Xs, Ys = zip(*pinwheels)
plt.plot(np.array(Xs), np.array(Ys), style)
plt.xlim((0.0,1.0)); plt.ylim((0.0,1.0))
ax.xaxis.set_ticks([]); ax.yaxis.set_ticks([])
ax.xaxis.set_ticklabels([]); ax.yaxis.set_ticklabels([])
return fig
示例15: plot_groups_at_time_point
def plot_groups_at_time_point(self,t, feat1, feat2):
markers = ['ro', 'go', 'bo', 'yo', 'ko', 'mo', 'co']
cp_list = self.cell_tracker.list_of_cell_profiles_per_timestamp[t].list_of_cell_profiles
fig = pylab.figure( facecolor='white')
counter = -1
for group_name in self.groups.keys():
counter +=1
gr = self.groups[group_name][t]
feat1_vals = []
feat2_vals = []
for idx in gr:
feat1_vals.append(cp_list[idx].dict_of_features[feat1])
feat2_vals.append(cp_list[idx].dict_of_features[feat2])
pylab.plot(feat1_vals, feat2_vals, markers[counter], label = group_name)
pylab.hold(True)
fig.canvas.set_window_title("Time point %s" % t)
pylab.legend(loc="best")
pylab.xlabel(feat1)
pylab.ylabel(feat2)
pylab.grid()