本文整理汇总了Python中pylab.figure函数的典型用法代码示例。如果您正苦于以下问题:Python figure函数的具体用法?Python figure怎么用?Python figure使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了figure函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: T2_cpmg_process
def T2_cpmg_process(folder_to_process,plot='y'):
"""Given a folder of images will process cpmg data and return
fitted T2 values and associated uncertainties"""
data=img_roi_signal([folder_to_process],['EchoTime'])
rois=data[0][0]
TEs=data[2][0]
mean_signal_mat=data[3]
serr_signal_mat=data[4]
if plot=='y':
plt.figure()
spin_echo_fits=[]
for jj in np.arange(len(rois)-2):
mean_sig=mean_signal_mat[0,jj,:]
#serr_sig=serr_signal_mat[0,jj,:]
mean_noise=np.mean(mean_signal_mat[0,-2,:])
try:
spin_echo_fit = SE_fit_new( np.array(TEs[0:]), mean_sig[0:], mean_noise, 'n' )
if plot=='y':
TE_full=np.arange(0,400,1)
plt.subplot(4,4,jj+1)
plt.plot(np.array(TEs[0:]), mean_sig[0:],'o')
plt.plot(TE_full,spin_echo_fit(TE_full))
spin_echo_fits.append(spin_echo_fit)
except RuntimeError:
print 'RuntimeError'
spin_echo=fitting.model('M0*exp(-x/T2)+a',{'M0':0,'T2':0,'a':0})
spin_echo_fits.append(spin_echo)
return spin_echo_fits
示例2: plotear
def plotear(xi,yi,zi):
# mask inner circle
interior1 = sqrt(((xi+1.5)**2) + (yi**2)) < 1.0
interior2 = sqrt(((xi-1.5)**2) + (yi**2)) < 1.0
zi[interior1] = ma.masked
zi[interior2] = ma.masked
p.figure(figsize=(16,10))
pyplot.jet()
max=2.8
min=0.4
steps = 50
levels=list()
labels=list()
for i in range(0,steps):
levels.append(int((max-min)/steps*100*i)*0.01+min)
for i in range(0,steps/2):
labels.append(levels[2*i])
CSF = p.contourf(xi,yi,zi,levels,norm=colors.LogNorm())
CS = p.contour(xi,yi,zi,levels, format='%.3f', labelsize='18')
p.clabel(CS,labels,inline=1,fontsize=9)
p.title('electrostatic potential of two spherical colloids, R=lambda/3',fontsize=24)
p.xlabel('z-coordinate (3*lambda)',fontsize=18)
p.ylabel('radial coordinate r (3*lambda)',fontsize=18)
# add a vertical bar with the color values
cbar = p.colorbar(CSF,ticks=labels,format='%.3f')
cbar.ax.set_ylabel('potential (reduced units)',fontsize=18)
cbar.add_lines(CS)
p.show()
示例3: embed_two_dimensions
def embed_two_dimensions(data, vectorizer, size=10, n_components=5, colormap='YlOrRd'):
if hasattr(data, '__iter__'):
iterable = data
else:
raise Exception('ERROR: Input must be iterable')
import itertools
iterable_1, iterable_2 = itertools.tee(iterable)
# get labels
labels = []
for graph in iterable_2:
label = graph.graph.get('id', None)
if label:
labels.append(label)
# transform iterable into sparse vectors
data_matrix = vectorizer.transform(iterable_1)
# embed high dimensional sparse vectors in 2D
from sklearn import metrics
distance_matrix = metrics.pairwise.pairwise_distances(data_matrix)
from sklearn.manifold import MDS
feature_map = MDS(n_components=n_components, dissimilarity='precomputed')
explicit_data_matrix = feature_map.fit_transform(distance_matrix)
from sklearn.decomposition import TruncatedSVD
pca = TruncatedSVD(n_components=2)
low_dimension_data_matrix = pca.fit_transform(explicit_data_matrix)
plt.figure(figsize=(size, size))
embed_dat_matrix_two_dimensions(low_dimension_data_matrix, labels=labels, density_colormap=colormap)
plt.show()
示例4: posterior
def posterior(kpl, pk, err, pkfold=None, errfold=None):
k0 = n.abs(kpl).argmin()
kpl = kpl[k0:]
if pkfold is None:
print 'Folding for posterior'
pkfold = pk[k0:].copy()
errfold = err[k0:].copy()
pkpos,errpos = pk[k0+1:].copy(), err[k0+1:].copy()
pkneg,errneg = pk[k0-1:0:-1].copy(), err[k0-1:0:-1].copy()
pkfold[1:] = (pkpos/errpos**2 + pkneg/errneg**2) / (1./errpos**2 + 1./errneg**2)
errfold[1:] = n.sqrt(1./(1./errpos**2 + 1./errneg**2))
#ind = n.logical_and(kpl>.2, kpl<.5)
ind = n.logical_and(kpl>.15, kpl<.5)
#ind = n.logical_and(kpl>.12, kpl<.5)
#print kpl,pk.real,err
kpl = kpl[ind]
pk= kpl**3 * pkfold[ind]/(2*n.pi**2)
err = kpl**3 * errfold[ind]/(2*n.pi**2)
s = n.logspace(5.,6.5,100)
data = []
for ss in s:
data.append(n.exp(-.5*n.sum((pk.real - ss)**2 / err**2)))
# print data[-1]
data = n.array(data)
#print data
#print s
#data/=n.sum(data)
data /= n.max(data)
p.figure(5)
p.plot(s, data)
p.plot(s, n.exp(-.5)*n.ones_like(s))
p.plot(s, n.exp(-.5*2**2)*n.ones_like(s))
p.show()
示例5: showHistory
def showHistory(self, figNum):
pylab.figure(figNum)
plot = pylab.plot(self.history, label = 'Test Stock')
plot
pylab.title('Closing Price, Test ' + str(figNum))
pylab.xlabel('Day')
pylab.ylabel('Price')
示例6: trace
def trace(data, name, format='png', datarange=(None, None), suffix='', path='./', rows=1, columns=1,
num=1, last=True, fontmap = None, verbose=1):
"""
Generates trace plot from an array of data.
:Arguments:
data: array or list
Usually a trace from an MCMC sample.
name: string
The name of the trace.
datarange: tuple or list
Preferred y-range of trace (defaults to (None,None)).
format (optional): string
Graphic output format (defaults to png).
suffix (optional): string
Filename suffix.
path (optional): string
Specifies location for saving plots (defaults to local directory).
fontmap (optional): dict
Font map for plot.
"""
if fontmap is None: fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}
# Stand-alone plot or subplot?
standalone = rows==1 and columns==1 and num==1
if standalone:
if verbose>0:
print_('Plotting', name)
figure()
subplot(rows, columns, num)
pyplot(data.tolist())
ylim(datarange)
# Plot options
title('\n\n %s trace'%name, x=0., y=1., ha='left', va='top', fontsize='small')
# Smaller tick labels
tlabels = gca().get_xticklabels()
setp(tlabels, 'fontsize', fontmap[rows/2])
tlabels = gca().get_yticklabels()
setp(tlabels, 'fontsize', fontmap[rows/2])
if standalone:
if not os.path.exists(path):
os.mkdir(path)
if not path.endswith('/'):
path += '/'
# Save to file
savefig("%s%s%s.%s" % (path, name, suffix, format))
示例7: plot_matches
def plot_matches(self, name, show_below = True, match_maximum = None):
""" 対応点を線で結んで画像を表示する
入力: im1,im2(配列形式の画像)、locs1,locs2(特徴点座標)
machescores(match()の出力)、
show_below(対応の下に画像を表示するならTrue)"""
im1 = self._image_1.get_array_image()
im2 = self._image_2.get_array_image()
self.appendimages()
im3 = self._append_image
if self._match_score is None:
self.match()
locs1 = self._image_1.get_shift_location()
locs2 = self._image_2.get_shift_location()
if show_below:
im3 = numpy.vstack((im3,im3))
pylab.figure(dpi=160)
pylab.gray()
pylab.imshow(im3, aspect = 'auto')
cols1 = im1.shape[1]
match_num = 0
for i,m in enumerate(self._match_score):
if m > 0 :
pylab.plot([locs1[i][0],locs2[m][0]+cols1], [locs1[i][1],locs2[m][1]], 'c')
match_num = match_num + 1
if match_maximum is not None and match_num >= match_maximum:
break
pylab.axis('off')
pylab.savefig(name, dpi=160)
示例8: Doplots_monthly
def Doplots_monthly(mypathforResults,PlottingDF,variable_to_fill, Site_ID,units,item):
ANN_label=str(item+"_NN") #Do Monthly Plots
print "Doing MOnthly plot"
#t = arange(1, 54, 1)
NN_label='Fc'
Plottemp = PlottingDF[[NN_label,item]][PlottingDF['day_night']!=1]
#Plottemp = PlottingDF[[NN_label,item]].dropna(how='any')
figure(1)
pl.title('Nightime ANN v Tower by year-month for '+item+' at '+Site_ID)
try:
xdata1a=Plottemp[item].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1a=True
except:
plotxdata1a=False
try:
xdata1b=Plottemp[NN_label].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1b=True
except:
plotxdata1b=False
if plotxdata1a==True:
pl.plot(xdata1a,'r',label=item)
if plotxdata1b==True:
pl.plot(xdata1b,'b',label=NN_label)
pl.ylabel('Flux')
pl.xlabel('Year - Month')
pl.legend()
pl.savefig(mypathforResults+'/ANN and Tower plots by year and month for variable '+item+' at '+Site_ID)
#pl.show()
pl.close()
time.sleep(1)
示例9: cmap_plot
def cmap_plot(cmdLine):
pylab.figure(figsize=[5,10])
a=outer(ones(10),arange(0,1,0.01))
subplots_adjust(top=0.99,bottom=0.00,left=0.01,right=0.8)
maps=[m for m in cm.datad if not m.endswith("_r")]
maps.sort()
l=len(maps)+1
for i, m in enumerate(maps):
print m
subplot(l,1,i+1)
pylab.setp(pylab.gca(),xticklabels=[],xticks=[],yticklabels=[],yticks=[])
imshow(a,aspect='auto',cmap=get_cmap(m),origin="lower")
pylab.text(100.85,0.5,m,fontsize=10)
# render plot
if cmdLine:
pylab.show(block=True)
else:
pylab.ion()
pylab.plot([])
pylab.ioff()
status = 1
return status
示例10: plotAllWarmJumps
def plotAllWarmJumps():
jumpAddrs = np.array(getAllWarmJumpsAddr()).reshape((8, 18))
figure()
pcolor(jumpAddrs)
for (x, y), v in np.ndenumerate(jumpAddrs):
text(y + 0.125, x + 0.5, "0x%03x" % v)
show()
示例11: plot_cost
def plot_cost(self):
if self.show_cost not in self.train_outputs[0][0]:
raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost)
train_errors = [o[0][self.show_cost][self.cost_idx] for o in self.train_outputs]
test_errors = [o[0][self.show_cost][self.cost_idx] for o in self.test_outputs]
numbatches = len(self.train_batch_range)
test_errors = numpy.row_stack(test_errors)
test_errors = numpy.tile(test_errors, (1, self.testing_freq))
test_errors = list(test_errors.flatten())
test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors))
test_errors = test_errors[:len(train_errors)]
numepochs = len(train_errors) / float(numbatches)
pl.figure(1)
x = range(0, len(train_errors))
pl.plot(x, train_errors, 'k-', label='Training set')
pl.plot(x, test_errors, 'r-', label='Test set')
pl.legend()
ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches)
epoch_label_gran = int(ceil(numepochs / 20.)) # aim for about 20 labels
epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) # but round to nearest 10
ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs))
pl.xticks(ticklocs, ticklabels)
pl.xlabel('Epoch')
# pl.ylabel(self.show_cost)
pl.title(self.show_cost)
示例12: plot_heatingrate
def plot_heatingrate(data_dict, filename, do_show=True):
pl.figure(201)
color_list = ['b','r','g','k','y','r','g','b','k','y','r',]
fmtlist = ['s','d','o','s','d','o','s','d','o','s','d','o']
result_dict = {}
for key in data_dict.keys():
x = data_dict[key][0]
y = data_dict[key][1][:,0]
y_err = data_dict[key][1][:,1]
p0 = np.polyfit(x,y,1)
fit = LinFit(np.array([x,y,y_err]).transpose(), show_graph=False)
p1 = [0,0]
p1[0] = fit.param_dict[0]['Slope'][0]
p1[1] = fit.param_dict[0]['Offset'][0]
print fit
x0 = np.linspace(0,max(x))
cstr = color_list.pop(0)
fstr = fmtlist.pop(0)
lstr = key + " heating: {0:.2f} ph/ms".format((p1[0]*1e3))
pl.errorbar(x/1e3,y,y_err,fmt=fstr + cstr,label=lstr)
pl.plot(x0/1e3,np.polyval(p0,x0),cstr)
pl.plot(x0/1e3,np.polyval(p1,x0),cstr)
result_dict[key] = 1e3*np.array(fit.param_dict[0]['Slope'])
pl.xlabel('Heating time (ms)')
pl.ylabel('nbar')
if do_show:
pl.legend()
pl.show()
if filename != None:
pl.savefig(filename)
return result_dict
示例13: swi_histogram
def swi_histogram(self,dir,name,measure,dpi=80,width=8,height=6,b_left='0.1',b_bot='0.1',b_top='0.1',b_right='0.1',bins='20'):
s=ccm.stats.Stats('%s/%s'%(dir,name))
data=s.get_raw(measure)
bins=int(bins)
pylab.figure(figsize=(float(width),float(height)))
try: b_left=float(b_left)
except: b_left=0.1
try: b_right=float(b_right)
except: b_right=0.1
try: b_top=float(b_top)
except: b_top=0.1
try: b_bot=float(b_bot)
except: b_bot=0.1
pylab.axes((b_left,b_bot,1.0-b_left-b_right,1.0-b_top-b_bot))
pylab.hist(data,bins=bins)
img=StringIO.StringIO()
if type(dpi) is list: dpi=dpi[-1]
pylab.savefig(img,dpi=int(dpi),format='png')
return 'image/png',img.getvalue()
示例14: T1_ir_bootstrap
def T1_ir_bootstrap(folders_to_process,N=1000,plot='n'):
"""Given a folder of images will process IR data and return
fitted T1 values and associated uncertainties. Uncertainties
are obtained by bootstrapping pixels within each ROI"""
images=[read_dicoms(folder,['InversionTime']) for folder in folders_to_process]
all_rois=[load_ROIs(folder+'/rois') for folder in folders_to_process]
TI_images=[img[0][0] for img in images]
TIs=np.array([img[1][0]['InversionTime'] for img in images])
T1s=[]
T1_errs=[]
for kk in np.arange(len(all_rois[0])-2):
rois=[roi_list[kk] for roi_list in all_rois]
sig=np.zeros(len(rois))
T1bs=[]
for mm, roi in enumerate(rois):
sig[mm]=TI_images[mm][roi.get_indices()].mean()
fit = IR_fit(TIs, sig)
T1s.append(fit['T1'].value)
if plot=='y':
plt.figure()
plt.plot(TIs,sig,'o')
TI_full=np.arange(0,8000,10)
plt.plot(TI_full,fit(TI_full))
if N>0:
for nn in np.arange(N):
for mm,roi in enumerate(rois):
npix=len(roi.get_indices()[0])
pixels=roi.get_indices()
ind=np.random.randint(npix,size=npix)
sig[mm]=TI_images[mm][pixels[0][ind],pixels[1][ind]].mean()
fit = IR_fit(TIs, sig)
T1bs.append(fit['T1'].value)
#T1s.append(np.mean(T1bs))
T1_errs.append(np.std(T1bs))
return T1s, T1_errs
示例15: plotHistogram
def plotHistogram(data, preTime):
pylab.figure(1)
pylab.hist(data, bins=10)
pylab.xlabel("Virus Population At End of Simulation")
pylab.ylabel("Number of Trials")
pylab.title("{0} Time Steps Before Treatment Simulation".format(preTime))
pylab.show()