本文整理汇总了Python中pylab.errorbar函数的典型用法代码示例。如果您正苦于以下问题:Python errorbar函数的具体用法?Python errorbar怎么用?Python errorbar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了errorbar函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: demo
def demo():
import pylab
# The module normalize is not part of the osrefl code base.
from reflectometry.reduction import normalize
from .examples import ng7 as dataset
spec = dataset.spec()[0]
water = WaterIntensity(D2O=20,probe=spec.probe)
spec.apply(normalize())
theory = water.model(spec.Qz,spec.detector.wavelength)
pylab.subplot(211)
pylab.title('Data normalized to water scattering (%g%% D2O)'%water.D2O)
pylab.xlabel('Qz (inv Ang)')
pylab.ylabel('Reflectivity')
pylab.semilogy(spec.Qz,theory,'-',label='expected')
scale = theory[0]/spec.R[0]
pylab.errorbar(spec.Qz,scale*spec.R,scale*spec.dR,fmt='.',label='measured')
spec.apply(water)
pylab.subplot(212)
#pylab.title('Intensity correction factor')
pylab.xlabel('Slit 1 opening (mm)')
pylab.ylabel('Incident intensity')
pylab.yscale('log')
pylab.errorbar(spec.slit1.x,spec.R,spec.dR,fmt='.',label='correction')
pylab.show()
示例2: NormDeltaRvT
def NormDeltaRvT(folder,keys):
if folder[0]['IVtemp']<250 and folder[0]['IVtemp']>5:
APiterator = [5,10]
AP = Analysis.AnalyseFile()
P = Analysis.AnalyseFile()
tsum = 0.0
for f in folder:
if f['iterator'] in APiterator:
AP.add_column(f.column('Voltage'),str(f['iterator']))
else:
P.add_column(f.column('Voltage'),str(f['iterator']))
tsum = tsum + f['Sample Temp']
AP.apply(func,0,replace=False,header='Mean NLV')
AP.add_column(f.Current,column_header = 'Current')
P.apply(func,0,replace=False,header='Mean NLV')
P.add_column(f.Current,column_header = 'Current')
APfit= AP.curve_fit(quad,'Current','Mean NLV',bounds=lambda x,y:x,result=True,header='Fit',asrow=True)
Pfit = P.curve_fit(quad,'Current','Mean NLV',bounds=lambda x,y:x,result=True,header='Fit',asrow=True)
DeltaR = Pfit[2] - APfit[2]
ErrDeltaR = numpy.sqrt((Pfit[3]**2)+(APfit[3]**2))
Spinsig.append(DeltaR/Res_Cu(tsum/10))
Spinsig_error.append(ErrDeltaR)
Temp.append(tsum/10)
plt.hold(True)
plt.title('$\Delta$R$_s$ vs T from linear coef of\nNLIV fit for '+f['Sample ID'],verticalalignment='bottom')
plt.xlabel('Temperture (K)')
plt.ylabel(r'$\Delta$R$_s$/$\rho$')
plt.errorbar(f['IVtemp'],1e3*DeltaR,1e3*ErrDeltaR,ecolor='k',marker='o',mfc='r', mec='k')
#plt.plot(f['IVtemp'],ErrDeltaR,'ok')
return Temp, Spinsig
示例3: plot_sed
def plot_sed(fluxes, backgrounds, errors, **kwargs):
"""
Trivial SED plotting
"""
pl.errorbar(band_waves.values(),fluxes-backgrounds,yerr=errors,marker='s', **kwargs)
pl.xlabel('$\lambda$ (mm)')
pl.ylabel('mJy/beam')
示例4: _show_rates
def _show_rates(rate, wo, wt, attenuator, tau_NP, tau_P):
import pylab
#pylab.figure()
pylab.errorbar(rate, wt[0], yerr=wt[1], fmt='g.', label='attenuated')
pylab.errorbar(rate, wo[0], yerr=wo[1], fmt='b.', label='unattenuated')
pylab.xscale('log')
pylab.yscale('log')
pylab.xlabel('incident rate (counts/second)')
pylab.ylabel('observed rate (counts/second)')
pylab.legend(loc='best')
pylab.grid(True)
pylab.plot(rate, rate/attenuator, 'g-', label='target')
pylab.plot(rate, rate, 'b-', label='target')
Ipeak, Rpeak = peak_rate(tau_NP=tau_NP, tau_P=tau_P)
if rate[0] <= Ipeak <= rate[-1]:
pylab.axvline(x=Ipeak, ls='--', c='b')
pylab.text(x=Ipeak, y=0.05, s=' %g'%Ipeak,
ha='left', va='bottom',
transform=pylab.gca().get_xaxis_transform())
if False:
pylab.axhline(y=Rpeak, ls='--', c='b')
pylab.text(y=Rpeak, x=0.05, s=' %g\n'%Rpeak,
ha='left', va='bottom',
transform=pylab.gca().get_yaxis_transform())
示例5: plot
def plot(self, params, errors=None,label=''):
params=[max(1e-100,p) for p in params]
E=np.concatenate(([self._ERange[0]],self._splitE,[self._ERange[1]]))
pl.plot(reduce(lambda a,b:a+b,[[e,e] for e in E]),[1e-10]+reduce(lambda a,b:a+b,[[p,p] for p in params])+[1e-10],label=label)
if errors!=None:
for i in range(len(E)-1):
pl.errorbar([np.sqrt(E[i]*E[i+1])],[params[i]],yerr=[errors[i]],fmt='r')
示例6: show_table
def show_table(table_name,ls="none", fmt="o", legend=False, name="m", do_half=0):
bt = fi.FITS(table_name)[1].read()
rgpp = (np.unique(bt["rgp_lower"])+np.unique(bt["rgp_upper"]))/2
nbins = rgpp.size
plt.xscale("log")
colours=["purple", "forestgreen", "steelblue", "pink", "darkred", "midnightblue", "gray", "sienna", "olive", "darkviolet"]
pts = ["o", "D", "x", "^", ">", "<", "1", "s", "*", "+", "."]
for i,r in enumerate(rgpp):
sel = (bt["i"]==i)
snr = 10** ((np.log10(bt["snr_lower"][sel]) + np.log10(bt["snr_upper"][sel]))/2)
if do_half==1 and i>nbins/2:
continue
elif do_half==2 and i<nbins/2:
continue
if legend:
plt.errorbar(snr, bt["%s"%name][i*snr.size:(i*snr.size)+snr.size], bt["err_%s"%name][i*snr.size:(i*snr.size)+snr.size], color=colours[i], ls=ls, fmt=pts[i], lw=2.5, label="$R_{gpp}/R_p = %1.2f-%1.2f$"%(np.unique(bt["rgp_lower"])[i],np.unique(bt["rgp_upper"])[i]))
else:
plt.errorbar(snr, bt["%s"%name][i*snr.size:(i*snr.size)+snr.size], bt["err_%s"%name][i*snr.size:(i*snr.size)+snr.size], color=colours[i], ls=ls, fmt=pts[i], lw=2.5)
plt.xlim(10,300)
plt.axhline(0, lw=2, color="k")
plt.xlabel("Signal-to-Noise $SNR_w$")
if name=="m":
plt.ylim(-0.85,0.05)
plt.ylabel("Multiplicative Bias $m \equiv (m_1 + m_2)/2$")
elif name=="alpha":
plt.ylabel(r"PSF Leakage $\alpha \equiv (\alpha _1 + \alpha _2)/2$")
plt.ylim(-0.5,2)
plt.legend(loc="lower right")
示例7: plot_data
def plot_data(yRange=None):
'''
Plots and saves the cell measurement data. Returns nothing.
'''
fig = plt.figure(figsize=(18,12))
ax = plt.subplot(111)
plt.errorbar(range(len(avgCells.index)), avgCells[column], yerr=stdCells[column], fmt='o')
ax = plt.gca()
ax.set(xticks=range(len(avgCells.index)), xticklabels=avgCells.index)
xlims = ax.get_xlim()
ax.set_xlim([lim-1 for lim in xlims])
# adjust yRange if it was specified
if yRange!=None:
ax.set_ylim(yRange)
fileName = column + ' exlcuding outliers'
else:
fileName = column
plt.subplots_adjust(bottom=0.2, right=0.98, left=0.05)
plt.title(column)
plt.ylabel('mm')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
mng = plt.get_current_fig_manager()
mng.window.state('zoomed')
#plt.show()
path1 = 'Y:/Test data/ACT02/vision inspection/plot_100_cells/'
path2 = 'Y:/Nate/git/nuvosun-python-lib/vision system/plot_100_cells/'
fig.savefig(path1 + fileName, bbox_inches = 'tight')
fig.savefig(path2 + fileName, bbox_inches = 'tight')
plt.close()
示例8: p2dscatter
def p2dscatter(self, log=False, color=None, label=None, orientation='horizontal', **kwargs):
""" use pylab.errorplot to visualize these scatter points
Parameters:
log : if true create logartihmic plot
(all other kwargs will be passed to pylab.errobar)
"""
if len(self.x) == 0:
return
ax = p.gca()
if color is None:
color = next(ax._get_lines.color_cycle)
kw = {"xerr" : self.xerr, "yerr" : self.yerr, "fmt" : "k", "capsize" : 0., "linestyle" : 'None', "color" : color}
kw.update(kwargs)
if orientation == 'vertical':
x, y = self.y, self.x
kw["xerr"], kw["yerr"] = kw["yerr"], kw["xerr"]
axis_name = 'x'
else:
x, y = self.x, self.y
axis_name = 'y'
_set_logscale(ax, log, axis=axis_name)
p.errorbar(x, y, **kw)
if not hasattr(ax, "_legend_proxy"):
ax._legend_proxy = LegendProxy(ax)
ax._legend_proxy.add_scatter(label=label, color=color)
_h2label(self, orientation)
示例9: _plot_aggr_random
def _plot_aggr_random(self, span, Nmax, marker='o', color='r', markersize=6):
# those are the best submitter. Nothing to recompute, can be extracted
# from the df itself.
iauc = [self.df.ix[x].mean_auc for x in range(0, Nmax)]
pylab.clf()
pylab.plot([x for x in span], iauc, marker+color, markersize=markersize,
label="AUC (individual submissions)".format(self.mode))
pylab.grid(True)
#pylab.plot()
pylab.xlabel("N", fontsize=20)
pylab.ylabel("AUROC", fontsize=20)
pylab.title("Aggregated AUROC (random case)", fontsize=20)
pylab.errorbar(span, self.results.mean(axis=0), self.results.std(axis=0),
label="{} aggregation (over N submissions)".format(self.mode))
pylab.legend(loc="lower left")
self._random_results = {}
self._random_results['x'] = span
self._random_results['individual'] = iauc
self._random_results['aggregation_mean'] = list(self.results.mean(axis=0))
self._random_results['aggregation_std'] = list(self.results.std(axis=0))
self._random_results['aggregation_all'] = [list(x) for x in self.results]
xmax = pylab.xlim()[1]
pylab.ylim([0.35, 0.86])
pylab.xlim(0.5, xmax)
示例10: plot_dmsq2
def plot_dmsq2(HOpions, OOpions, title=None, save=False, name=''):
"Plot m^2_{vs} - m^2_{vv}/2."
# Set up figure.
fig = p.figure()
p.rc('text', usetex=True)
p.rc('font', size=16)
p.rc('axes', linewidth=0.5)
p.xlabel('$am_{s}$')
p.ylabel('$m^2_{vs} - m^2_{vv}/2$')
legend = ()
xr = np.linspace(0.0,0.06)
# First data set.
hopions = [HOpions[1], HOpions[5]]
r = OOpions[3]
xs = [q.m1 for q in hopions]
ys = [(q.msq - r.msq/2) for q in hopions]
es = [nerror(q.sig_msq, r.sig_msq) for q in hopions]
fit = line_fit2(zip(xs,ys,es))
legend += p.errorbar(xs, ys, fmt='bo')[0],
# Fit results
p.errorbar(xr, fit.a+fit.b*xr, fmt='b-')
print fit.a, fit.sig_a
if save:
p.savefig(name)
else:
p.show()
示例11: plot_results
def plot_results(self, results, xloc, color, ls, label):
iter_counts = sorted(set([it for it, av in results.keys() if av == self.average]))
sorted_results = [results[it, self.average] for it in iter_counts]
avg = np.array([r.train_logprob() for r in sorted_results])
if hasattr(r, 'train_logprob_interval'):
lower = np.array([r.train_logprob_interval()[0] for r in sorted_results])
upper = np.array([r.train_logprob_interval()[1] for r in sorted_results])
if self.logscale:
plot_cmd = pylab.semilogx
else:
plot_cmd = pylab.plot
xloc = xloc[:len(avg)]
lw = 2.
if label not in self.labels:
plot_cmd(xloc, avg, color=color, ls=ls, lw=lw, label=label)
else:
plot_cmd(xloc, avg, color=color, ls=ls, lw=lw)
self.labels.add(label)
pylab.xticks(fontsize='xx-large')
pylab.yticks(fontsize='xx-large')
try:
pylab.errorbar(xloc, (lower+upper)/2., yerr=(upper-lower)/2., fmt='', ls='None', ecolor=color)
except:
pass
示例12: __primativePlotTGNs__
def __primativePlotTGNs__(self,bare=bool(False)):
"""
Is a macro of plotting commands that takes a list of TGNs that
plots each of these individually as a collection of points.
Creates a figure plotting the thread of list of TGNs using the
centroid and an X,Y error bars. Take a optional boolean to
make the plot not include a title and legend
"""
#Determine the index that corresponds to X and Y quantities
xIndex=0
yIndex=0
xLabel="NULL"
yLabel="NULL"
(xIndex,xLabel,yIndex,yLabel)=self.__getIndexAndLabels__()
plotValues=list()
gpsTimesInList=list()
for thisTGN in self.tgnList:
label=str(thisTGN.getID())
#Get the X,Y property
(xC,xE)=thisTGN.getCentroidErrorViaIndex(xIndex)
(yC,yE)=thisTGN.getCentroidErrorViaIndex(yIndex)
plotValues.append([xC,yC,xE,yE,label])
gpsTimesInList.append(thisTGN.getGPS())
for x,y,ex,ey,txtLabel in plotValues:
pylab.errorbar(x,y,xerr=ex,yerr=ey,label=txtLabel,marker='o')
pylab.xlabel(str(xLabel))
pylab.ylabel(str(yLabel))
if not bare:
pylab.title("TGNs: %i"%(min(gpsTimesInList)))
pylab.legend()
示例13: plot_fitness
def plot_fitness(self, show=True, save=False):
df = pd.DataFrame([res['t1opt']['results']['Best_score'].values
for res in self.results.allRes])
df = df.astype(float)
pylab.clf()
for res in self.results.allRes:
pylab.plot(res['t1opt']['results']['Best_score'], '--', color='grey')
pylab.grid()
pylab.xlabel("Generation")
pylab.ylabel("Score")
#pylab.plot(df.mean().values, 'kx--', lw=3, label='Mean Score')
y = df.mean().values
x = range(0, len(y))
yerr = df.std().values
pylab.errorbar(x, y, yerr=yerr, xerr=None, fmt='-', label='Mean Score',
color='k', lw=3)
pylab.legend()
if save is True:
self._report.savefig("fitness.png")
if show is False:
pylab.close()
示例14: nishiyama09
def nishiyama09(wavelength, AKs, makePlot=False):
# Data pulled from Nishiyama et al. 2009, Table 1
filters = ['V', 'J', 'H', 'Ks', '[3.6]', '[4.5]', '[5.8]', '[8.0]']
wave = np.array([0.551, 1.25, 1.63, 2.14, 3.545, 4.442, 5.675, 7.760])
A_AKs = np.array([16.13, 3.02, 1.73, 1.00, 0.500, 0.390, 0.360, 0.430])
A_AKs_err = np.array([0.04, 0.04, 0.03, 0.00, 0.010, 0.010, 0.010, 0.010])
# Interpolate over the curve
spline_interp = interpolate.splrep(wave, A_AKs, k=3, s=0)
A_AKs_at_wave = interpolate.splev(wavelength, spline_interp)
A_at_wave = AKs * A_AKs_at_wave
if makePlot:
py.clf()
py.errorbar(wave, A_AKs, yerr=A_AKs_err, fmt='bo',
markerfacecolor='none', markeredgecolor='blue',
markeredgewidth=2)
# Make an interpolated curve.
wavePlot = np.arange(wave.min(), wave.max(), 0.1)
extPlot = interpolate.splev(wavePlot, spline_interp)
py.loglog(wavePlot, extPlot, 'k-')
# Plot a marker for the computed value.
py.plot(wavelength, A_AKs_at_wave, 'rs',
markerfacecolor='none', markeredgecolor='red',
markeredgewidth=2)
py.xlabel('Wavelength (microns)')
py.ylabel('Extinction (magnitudes)')
py.title('Nishiyama et al. 2009')
return A_at_wave
示例15: scatter_stats
def scatter_stats(db, s1, s2, f1=None, f2=None, **kwargs):
if f1 == None:
f1 = lambda x: x # constant function
if f2 == None:
f2 = f1
x = []
xerr = []
y = []
yerr = []
for k in db:
x_k = [f1(x_ki) for x_ki in db[k].__getattribute__(s1).gettrace()]
y_k = [f2(y_ki) for y_ki in db[k].__getattribute__(s2).gettrace()]
x.append(pl.mean(x_k))
xerr.append(pl.std(x_k))
y.append(pl.mean(y_k))
yerr.append(pl.std(y_k))
pl.text(x[-1], y[-1], " %s" % k, fontsize=8, alpha=0.4, zorder=-1)
default_args = {"fmt": "o", "ms": 10}
default_args.update(kwargs)
pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
pl.xlabel(s1)
pl.ylabel(s2)