本文整理汇总了Python中pylab.contour函数的典型用法代码示例。如果您正苦于以下问题:Python contour函数的具体用法?Python contour怎么用?Python contour使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了contour函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Contour
def Contour(X,Y,Z, label='', levels=None, cmapidx=0, colors=None, fmt='%g', lwd=1, fsz=10,
inline=0, wire=True, cbar=True, zorder=None, markZero='', clabels=True):
"""
Plot contour
============
"""
L = None
if levels != None:
if not hasattr(levels, "__iter__"): # not a list or array...
levels = linspace(Z.min(), Z.max(), levels)
if colors==None:
c1 = contourf (X,Y,Z, cmap=Cmap(cmapidx), levels=levels, zorder=None)
else:
c1 = contourf (X,Y,Z, colors=colors, levels=levels, zorder=None)
if wire:
c2 = contour (X,Y,Z, colors=('k'), levels=levels, linewidths=[lwd], zorder=None)
if clabels:
clabel (c2, inline=inline, fontsize=fsz)
if cbar:
cb = colorbar (c1, format=fmt)
cb.ax.set_ylabel (label)
if markZero:
c3 = contour(X,Y,Z, levels=[0], colors=[markZero], linewidths=[2])
if clabels:
clabel(c3, inline=inline, fontsize=fsz)
示例2: plot_mcmc_results
def plot_mcmc_results(chain):
# Pull m and b arrays out of the Markov chain.
mm = [m for b,m in chain]
bb = [b for b,m in chain]
# Scatterplot of m,b posterior samples
plt.clf()
plt.contour(bgrid, mgrid, posterior, pdf_contour_levels(posterior))
plt.plot(bb, mm, 'b.', alpha=0.1)
plot_mb_setup()
plt.show()
# Histograms
import triangle
triangle.corner(chain, labels=['b','m'], extents=[0.99]*2)
plt.show()
# Traces
plt.clf()
plt.subplot(2,1,1)
plt.plot(mm, 'k-')
plt.ylim(mlo,mhi)
plt.ylabel('m')
plt.subplot(2,1,2)
plt.plot(bb, 'k-')
plt.ylabel('b')
plt.ylim(blo,bhi)
plt.show()
示例3: contour
def contour(*args, **kwargs):
"""
Make an SPH image of the given simulation and render it as contours.
nlevels and levels are passed to pyplot's contour command.
Other arguments are as for *image*.
"""
import copy
kwargs_image = copy.copy(kwargs)
nlevels = kwargs_image.pop('nlevels',None)
levels = kwargs_image.pop('levels',None)
width = kwargs_image.get('width','10 kpc')
kwargs_image['noplot']=True
im = image(*args, **kwargs_image)
res = im.shape
units = kwargs_image.get('units',None)
if isinstance(width, str) or issubclass(width.__class__, _units.UnitBase):
if isinstance(width, str):
width = _units.Unit(width)
sim = args[0]
width = width.in_units(sim['pos'].units, **sim.conversion_context())
width = float(width)
x,y = np.meshgrid(np.linspace(-width/2,width/2,res[0]),np.linspace(-width/2,width/2,res[0]))
p.contour(x,y,im,nlevels=nlevels,levels=levels)
示例4: contour
def contour(list):
xrange = numpy.arange(-5, 5, 0.05)
yrange = numpy.arange(-5, 5, 0.05)
grid = matrix([[indicator(x, y, list) for y in yrange] for x in xrange])
pylab.contour(xrange, yrange, grid, (-1.0, 0.0, 1.0), colors=('red', 'black', 'blue'), linewidths=(1, 3, 1))
pylab.show()
示例5: doSubplot
def doSubplot(multiplier=1.0, layout=(-1, -1)):
if time_sec < 16200:
xs, ys = xs_1, ys_1
domain_bounds = bounds_1sthalf
grid = grid_1
else:
xs, ys = xs_2, ys_2
domain_bounds = bounds_2ndhalf
grid = grid_2
try:
mo = ARPSModelObsFile("%s/%s/KCYS%03dan%06d" % (base_path, exp, min_ens, time_sec))
except AssertionError:
mo = ARPSModelObsFile("%s/%s/KCYS%03dan%06d" % (base_path, exp, min_ens, time_sec), mpi_config=(2, 12))
except:
print "Can't load reflectivity ..."
mo = {'Z':np.zeros((1, 255, 255), dtype=np.float32)}
pylab.contour(xs, ys, wind[exp]['w'][wdt][domain_bounds], levels=np.arange(2, 102, 2), styles='-', colors='k')
pylab.contour(xs, ys, wind[exp]['w'][wdt][domain_bounds], levels=np.arange(-100, 0, 2), styles='--', colors='k')
pylab.quiver(xs[thin], ys[thin], wind[exp]['u'][wdt][domain_bounds][thin], wind[exp]['v'][wdt][domain_bounds][thin])
pylab.contourf(xs, ys, mo['Z'][0][domain_bounds], levels=np.arange(10, 85, 5), cmap=NWSRef, zorder=-10)
grid.drawPolitical(scale_len=10)
row, col = layout
if col == 1:
pylab.text(-0.075, 0.5, exp_names[exp], transform=pylab.gca().transAxes, rotation=90, ha='center', va='center', size=12 * multiplier)
示例6: plot_debug
def plot_debug(result):
import pylab
from pylab import contour, grid, show
contours = (70.9/22.4, 70.9/22.4*3, 70.9/22.4*20)
contour(result, contours)
grid(True)
show()
示例7: test_masking
def test_masking():
xi, yi = 20*random.rand(2, 100)
hi = exp( -(xi-10.)**2/10.0 -(yi-10.)**2/5.0)
h = grid.extrap_xy_to_grid(xi, yi, hi)
pl.contour(grid.x_rho, grid.y_rho, h)
print h
pl.show()
示例8: visualize_fits
def visualize_fits(fitsfile, figname, colorbar = False) :
'''Saves fitsfile contents as an image, <figname>.png'''
pl.figure()
pl.contour(get_fits_obj(fitsfile))
if colorbar:
pl.colorbar()
pl.savefig(figname+'.png')
示例9: plot_haxby
def plot_haxby(activation, title):
z = 25
fig = pl.figure(figsize=(4, 5.4))
fig.subplots_adjust(bottom=0., top=1., left=0., right=1.)
pl.axis('off')
# pl.title('SVM vectors')
pl.imshow(np.rot90(mean_img[:, 4:58, z]), cmap=pl.cm.gray,
interpolation='nearest')
pl.imshow(np.rot90(activation[:, 4:58, z]), cmap=pl.cm.hot,
interpolation='nearest')
mask_house = nibabel.load(h.mask_house[0]).get_data()
mask_face = nibabel.load(h.mask_face[0]).get_data()
pl.contour(np.rot90(mask_house[:, 4:58, z].astype(np.bool)), contours=1,
antialiased=False, linewidths=4., levels=[0],
interpolation='nearest', colors=['blue'])
pl.contour(np.rot90(mask_face[:, 4:58, z].astype(np.bool)), contours=1,
antialiased=False, linewidths=4., levels=[0],
interpolation='nearest', colors=['limegreen'])
p_h = Rectangle((0, 0), 1, 1, fc="blue")
p_f = Rectangle((0, 0), 1, 1, fc="limegreen")
pl.legend([p_h, p_f], ["house", "face"])
pl.title(title, x=.05, ha='left', y=.90, color='w', size=28)
示例10: main
def main():
print("Running main method.")
print("")
# Generate the datapoints and plot them.
classA, classB = gen_datapoints_helper()
kernels = [LINEAR, POLYNOMIAL, RADIAL_BASIS, SIGMOID]
for k in kernels:
pylab.figure()
pylab.title(kernel_name(k))
pylab.plot([p[0] for p in classA],
[p[1] for p in classA],
'bo')
pylab.plot([p[0] for p in classB],
[p[1] for p in classB],
'ro')
# Add the sets together and shuffle them around.
datapoints = gen_datapoints_from_classes(classA, classB)
t= train(datapoints, k)
# Plot the decision boundaries.
xr=numpy.arange(-4, 4, 0.05)
yr=numpy.arange(-4, 4, 0.05)
grid=matrix([[indicator(t, x, y, k) for y in yr] for x in xr])
pylab.contour(xr, yr, grid, (-1.0, 0.0, 1.0), colors=('red', 'black', 'blue'), linewidths=(1, 3, 1))
# Now that we are done we show the ploted datapoints and the decision
# boundary.
pylab.show()
示例11: main
def main():
import pylab
# Create the gaussian data
Xin, Yin = pylab.mgrid[0:201, 0:201]
data = gaussian(3, 100, 100, 20, 40)(Xin, Yin) + np.random.random(Xin.shape)
pylab.matshow(data, cmap='gist_rainbow')
params = fitgaussian(data)
fit = gaussian(*params)
pylab.contour(fit(*pylab.indices(data.shape)), cmap='copper')
ax = pylab.gca()
(height, x, y, width_x, width_y) = params
pylab.text(0.95, 0.05, """
x : %.1f
y : %.1f
width_x : %.1f
width_y : %.1f""" %(x, y, width_x, width_y),
fontsize=16, horizontalalignment='right',
verticalalignment='bottom', transform=ax.transAxes)
pylab.show()
示例12: multiple_optima
def multiple_optima(gene_number=937, resolution=80, model_restarts=10, seed=10000, max_iters=300, optimize=True, plot=True):
"""
Show an example of a multimodal error surface for Gaussian process
regression. Gene 939 has bimodal behaviour where the noisy mode is
higher.
"""
# Contour over a range of length scales and signal/noise ratios.
length_scales = np.linspace(0.1, 60., resolution)
log_SNRs = np.linspace(-3., 4., resolution)
try:import pods
except ImportError:
print 'pods unavailable, see https://github.com/sods/ods for example datasets'
return
data = pods.datasets.della_gatta_TRP63_gene_expression(data_set='della_gatta',gene_number=gene_number)
# data['Y'] = data['Y'][0::2, :]
# data['X'] = data['X'][0::2, :]
data['Y'] = data['Y'] - np.mean(data['Y'])
lls = GPy.examples.regression._contour_data(data, length_scales, log_SNRs, GPy.kern.RBF)
if plot:
pb.contour(length_scales, log_SNRs, np.exp(lls), 20, cmap=pb.cm.jet)
ax = pb.gca()
pb.xlabel('length scale')
pb.ylabel('log_10 SNR')
xlim = ax.get_xlim()
ylim = ax.get_ylim()
# Now run a few optimizations
models = []
optim_point_x = np.empty(2)
optim_point_y = np.empty(2)
np.random.seed(seed=seed)
for i in range(0, model_restarts):
# kern = GPy.kern.RBF(1, variance=np.random.exponential(1.), lengthscale=np.random.exponential(50.))
kern = GPy.kern.RBF(1, variance=np.random.uniform(1e-3, 1), lengthscale=np.random.uniform(5, 50))
m = GPy.models.GPRegression(data['X'], data['Y'], kernel=kern)
m.likelihood.variance = np.random.uniform(1e-3, 1)
optim_point_x[0] = m.rbf.lengthscale
optim_point_y[0] = np.log10(m.rbf.variance) - np.log10(m.likelihood.variance);
# optimize
if optimize:
m.optimize('scg', xtol=1e-6, ftol=1e-6, max_iters=max_iters)
optim_point_x[1] = m.rbf.lengthscale
optim_point_y[1] = np.log10(m.rbf.variance) - np.log10(m.likelihood.variance);
if plot:
pb.arrow(optim_point_x[0], optim_point_y[0], optim_point_x[1] - optim_point_x[0], optim_point_y[1] - optim_point_y[0], label=str(i), head_length=1, head_width=0.5, fc='k', ec='k')
models.append(m)
if plot:
ax.set_xlim(xlim)
ax.set_ylim(ylim)
return m # (models, lls)
示例13: plotRadTilt
def plotRadTilt(plot_data, plot_cmaps, plot_titles, grid, file_name, base_ref=None):
subplot_base = 220
n_plots = 4
xs, ys, gs_x, gs_y, map = grid
pylab.figure(figsize=(12,12))
pylab.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, wspace=0.04)
for plot in range(n_plots):
pylab.subplot(subplot_base + plot + 1)
cmap, vmin, vmax = plot_cmaps[plot]
cmap.set_under("#ffffff", alpha=0.0)
pylab.pcolormesh(xs - gs_x / 2, ys - gs_y / 2, plot_data[plot] >= -90, vmin=0, vmax=1, cmap=mask_cmap)
pylab.pcolormesh(xs - gs_x / 2, ys - gs_y / 2, plot_data[plot], vmin=vmin, vmax=vmax, cmap=cmap)
pylab.colorbar()
if base_ref is not None:
pylab.contour(xs, ys, base_ref, levels=[10.], colors='k', lw=0.5)
# if plot == 0:
# pylab.contour(xs, ys, refl_88D[:, :, 0], levels=np.arange(10, 80, 10), colors='#808080', lw=0.5)
# pylab.plot(radar_x, radar_y, 'ko')
pylab.title(plot_titles[plot])
drawPolitical(map)
pylab.savefig(file_name)
pylab.close()
return
示例14: contourFromFunction
def contourFromFunction(XYfunction,plotPoints=100,\
xrange=None,yrange=None,numContours=20,alpha=1.0, contourLines=None):
"""
Given a 2D function, plots constant contours over the given
range. If the range is not given, the current plotting
window range is used.
"""
# set up x and y ranges
currentAxis = pylab.axis()
if xrange is not None:
xvalues = pylab.linspace(xrange[0],xrange[1],plotPoints)
else:
xvalues = pylab.linspace(currentAxis[0],currentAxis[1],plotPoints)
if yrange is not None:
yvalues = pylab.linspace(yrange[0],yrange[1],plotPoints)
else:
yvalues = pylab.linspace(currentAxis[2],currentAxis[3],plotPoints)
#coordArray = _coordinateArray2D(xvalues,yvalues)
# add extra dimension to this to make iterable?
# bug here! need to fix for contour plots
z = map( lambda y: map(lambda x: XYfunction(x,y), xvalues), yvalues)
if contourLines:
pylab.contour(xvalues,yvalues,z,contourLines,alpha=alpha)
else:
pylab.contour(xvalues,yvalues,z,numContours,alpha=alpha)
示例15: polarmap_contours
def polarmap_contours(polarmap): # Example docstring
"""
Identifies the real and imaginary contours in a polar map. Returns
the real and imaginary contours as 2D vertex arrays together with
the pairs of contours known to intersect. The coordinate system is
normalized so x and y coordinates range from zero to one.
Contour plotting requires origin='upper' for consistency with image
coordinate system.
"""
# Convert to polar and normalise
normalized_polar = normalize_polar_channel(polarmap)
figure_handle = plt.figure()
# Real component
re_contours_plot = plt.contour(normalized_polar.real, levels=[0], origin='upper')
re_path_collections = re_contours_plot.collections[0]
re_contour_paths = re_path_collections.get_paths()
# Imaginary component
im_contours_plot = plt.contour(normalized_polar.imag, levels=[0], origin='upper')
im_path_collections = im_contours_plot.collections[0]
im_contour_paths = im_path_collections.get_paths()
plt.close(figure_handle)
intersections = [ (re_ind, im_ind)
for (re_ind, re_path) in enumerate(re_contour_paths)
for (im_ind, im_path) in enumerate(im_contour_paths)
if im_path.intersects_path(re_path)]
(ydim, xdim) = polarmap.shape
# Contour vertices 0.5 pixel inset. Eg. (0,0)-(48,48)=>(0.5, 0.5)-(47.5, 47.5)
# Returned values will not therefore reach limits of 0.0 and 1.0
re_contours = [remove_path_duplicates(re_path.vertices) / [ydim, xdim] \
for re_path in re_contour_paths]
im_contours = [remove_path_duplicates(im_path.vertices) / [ydim, xdim] \
for im_path in im_contour_paths]
return (re_contours, im_contours, intersections)