本文整理汇总了Python中pylab.colorbar函数的典型用法代码示例。如果您正苦于以下问题:Python colorbar函数的具体用法?Python colorbar怎么用?Python colorbar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了colorbar函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: connection_field_plot_continuous
def connection_field_plot_continuous(self,index,afferent=True,density=30):
weights = self.proj.getWeights(format='array')
x = []
y = []
w = []
if afferent:
weights = weights[:,index].ravel()
p = self.proj.pre
else:
weights = weights[index,:].ravel()
p = self.proj.post
for (ww,i) in zip(weights,numpy.arange(0,len(weights),1)):
x.append(p.positions[0][i])
y.append(p.positions[1][i])
w.append(ww)
bx = min([min(p.positions[0]),min(p.positions[0])])
by = max([max(p.positions[1]),max(p.positions[1])])
xi = numpy.linspace(min(p.positions[0]),max(p.positions[0]),100)
yi = numpy.linspace(min(p.positions[1]),max(p.positions[1]),100)
zi = griddata(x,y,w,xi,yi)
pylab.figure()
pylab.imshow(zi)
pylab.title('Connection field from %s to %s of neuron %d' % (self.source.name,self.target.name,index))
pylab.colorbar()
示例2: displayResults
def displayResults(self,res, cm=pylab.cm.gray, title='Specify a title'):
if self.display:
self.count=self.count+1
pylab.figure(self.count)
pylab.imshow(res, cm, interpolation='nearest')
pylab.colorbar()
pylab.title(title)
示例3: getOptCandGamma
def getOptCandGamma(cv_train, cv_label):
print "Finding optimal C and gamma for SVM with RBF Kernel"
C_range = 10.0 ** np.arange(-2, 9)
gamma_range = 10.0 ** np.arange(-5, 4)
param_grid = dict(gamma=gamma_range, C=C_range)
cv = StratifiedKFold(y=cv_label, n_folds=40)
# Use the svm.SVC() as the cost function to evaluate parameter choices
# NOTE: Perhaps we should run computations in parallel if needed. Does it
# do that already within the class?
grid = GridSearchCV(svm.SVC(), param_grid=param_grid, cv=cv)
grid.fit(cv_train, cv_label)
score_dict = grid.grid_scores_
scores = [x[1] for x in score_dict]
scores = np.array(scores).reshape(len(C_range), len(gamma_range))
pl.figure(figsize=(8,6))
pl.subplots_adjust(left=0.05, right=0.95, bottom=0.15, top=0.95)
pl.imshow(scores, interpolation='nearest', cmap=pl.cm.spectral)
pl.xlabel('gamma')
pl.ylabel('C')
pl.colorbar()
pl.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45)
pl.yticks(np.arange(len(C_range)), C_range)
pl.show()
print "The best classifier is: ", grid.best_estimator_
示例4: psfplots
def psfplots():
tpsf = wise.get_psf_model(1, pixpsf=True)
psfp = tpsf.getPointSourcePatch(0, 0)
psf = psfp.patch
psf /= psf.sum()
plt.clf()
plt.imshow(np.log10(np.maximum(1e-5, psf)), interpolation='nearest', origin='lower')
plt.colorbar()
ps.savefig()
h,w = psf.shape
cx,cy = w/2, h/2
X,Y = np.meshgrid(np.arange(w), np.arange(h))
R = np.sqrt((X - cx)**2 + (Y - cy)**2)
plt.clf()
plt.semilogy(R.ravel(), psf.ravel(), 'b.')
plt.xlabel('Radius (pixels)')
plt.ylabel('PSF value')
plt.ylim(1e-8, 1.)
ps.savefig()
plt.clf()
plt.loglog(R.ravel(), psf.ravel(), 'b.')
plt.xlabel('Radius (pixels)')
plt.ylabel('PSF value')
plt.ylim(1e-8, 1.)
ps.savefig()
print('PSF norm:', np.sqrt(np.sum(np.maximum(0, psf)**2)))
print('PSF max:', psf.max())
示例5: window_fn_matrix
def window_fn_matrix(Q,N,num_remov=None,save_tag=None,lms=None):
Q = n.matrix(Q); N = n.matrix(N)
Ninv = uf.pseudo_inverse(N,num_remov=None) # XXX want to remove dynamically
#print Ninv
info = n.dot(Q.H,n.dot(Ninv,Q))
M = uf.pseudo_inverse(info,num_remov=num_remov)
W = n.dot(M,info)
if save_tag!=None:
foo = W[0,:]
foo = n.real(n.array(foo))
foo.shape = (foo.shape[1]),
print foo.shape
p.scatter(lms[:,0],foo,c=lms[:,1],cmap=mpl.cm.PiYG,s=50)
p.xlabel('l (color is m)')
p.ylabel('W_0,lm')
p.title('First Row of Window Function Matrix')
p.colorbar()
p.savefig('{0}/{1}_W.pdf'.format(fig_loc,save_tag))
p.clf()
print 'W ',W.shape
p.imshow(n.real(W))
p.title('Window Function Matrix')
p.colorbar()
p.savefig('{0}/{1}_W_im.pdf'.format(fig_loc,save_tag))
p.clf()
return W
示例6: plot_worker
def plot_worker(jobq,mask,pid,lineshape,range):
'''
args[0] = array file name
args[1] = output figure name
if mask, where masked==0 is masked
'''
if lineshape:
lines = shapefile.load_shape_list(lineshape)
else:
lines = None
while True:
#--get some args from the queue
args = jobq.get()
#--check if this is a sentenial
if args == None:
break
#--load
if args[2]:
arr = np.fromfile(args[0],dtype=np.float32)
arr.resize(bro.nrow,bro.ncol)
else:
arr = np.loadtxt(args[0])
if mask != None:
arr = np.ma.masked_where(mask==0,arr)
#print args[0],arr.min(),arr.max(),arr.mean()
#--generic plotting
fig = pylab.figure()
ax = pylab.subplot(1,1,1,aspect='equal')
if range:
vmax = range[1]
vmin = range[0]
else:
vmax = arr.max()
vmin = arr.min()
#p = ax.imshow(arr,interpolation='none')
p = ax.pcolor(bro.X,bro.Y,np.flipud(arr),vmax=vmax,vmin=vmin)
pylab.colorbar(p)
if lines:
for line in lines:
ax.plot(line[0,:],line[1,:],'k-',lw=1.0)
#break
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_xlim(bro.plt_x)
ax.set_ylim(bro.plt_y)
ax.set_title(args[0])
fmt = args[1].split('.')[-1]
pylab.savefig(args[1],dpi=300,format=fmt)
pylab.close(fig)
#--mark this task as done
jobq.task_done()
print 'plot worker',pid,' finished',args[0]
#--mark the sentenial as done
jobq.task_done()
return
示例7: plot_ch
def plot_ch():
for job in jobs_orig:
print "plane of", job.path
pylab.clf()
x_center = int((job.position(0)[0] + job.position(1)[0])/2)
x_final = 50 + x_center
#plane = np.concatenate((job.plane(y=50)[:, x_final:],
# job.plane(y=50)[:, :x_final]), axis=1)
plane = job.plane(y=50)
myplane = plane[plane < 0.0]
p0 = myplane.min()
p12 = np.median(myplane)
p14 = np.median(myplane[myplane<p12])
p34 = np.median(myplane[myplane>p12])
p1 = myplane.max()
contour_values = (p0, p14, p12, p34, p1)
pylab.title(r'$u_x=%.4f,\ D_{-}=%.4f,\ D_{+}=%.4f,\ ch=%i$ ' %
(job.u_x, job.D_minus, job.D_plus, job.ch_objects))
car = pylab.imshow(plane, vmin=-0.001, vmax=0.0,
interpolation='nearest')
pylab.contour(plane, contour_values, linestyles='dashed',
colors='white')
pylab.grid(True)
pylab.colorbar(car)
#imgfilename = 'plane_r20-y50-u_x%.4fD%.4fch%03i.png' % \
# (job.u_x, job.D_minus, job.ch_objects)
imgfilename = 'plane_%s.png' % job.job_id
pylab.savefig(imgfilename)
示例8: draw_heat_graph
def draw_heat_graph(getgraph, opts):
# from pyevolve_graph script
stage_points = getgraph()
fg = pl.figure()
ax = fg.add_subplot(111)
pl.imshow(
stage_points, aspect="auto", interpolation="gaussian",
cmap=matplotlib.cm.__dict__["jet"])
pl.title("Population scores along the generations")
def labelfmt(x, pos=0):
# there is surely a better way to do that
return (float(x) == int(x)) and '%d' % (x) or ''
ax.xaxis.set_major_formatter(pl.FuncFormatter(labelfmt))
pl.xlabel('Generations -->')
pl.ylabel('Sorted Population Results')
pl.grid(True)
pl.colorbar()
if opts.outfile:
fg.savefig(opts.outfile)
if opts.show:
pl.show()
示例9: plot_C_gamma_grid_search
def plot_C_gamma_grid_search(grid, C_range, gamma_range, score):
'''
Plots the scores computed on a grid.
Arguments:
grid - the grid search object created using GridSearchCV()
C_range - the C parameter range
gamma_range - the gamma parameter range
score - the scoring function
'''
# grid_scores_ contains parameter settings and scores
# We extract just the scores
scores = [x[1] for x in grid.grid_scores_]
scores = np.array(scores).reshape(len(C_range), len(gamma_range))
# draw heatmap of accuracy as a function of gamma and C
pl.figure(figsize=(8, 6))
pl.subplots_adjust(left=0.05, right=0.95, bottom=0.15, top=0.95)
pl.imshow(scores, interpolation='nearest', cmap=pl.cm.spectral)
pl.title("Grid search on C and gamma for best %s" % score)
pl.xlabel('gamma')
pl.ylabel('C')
pl.colorbar()
pl.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45)
pl.yticks(np.arange(len(C_range)), C_range)
pl.show()
示例10: plothistory
def plothistory(self):
a=self.a
b=self.b
plt.figure(figsize=(12,6))
I=np.concatenate([a.T,np.array(np.nansum(a[:,:3],1),ndmin=2),
np.array(np.nansum(a[:,3:6],1),ndmin=2),np.array(np.nansum(a[:,6:],1),ndmin=2)],axis=0)
plt.plot(range(b.size),b,'rx',ms=8,mew=2)
plt.plot([10.5,10.5],[-1,I.shape[1]],'r',lw=2)
plt.imshow(I,interpolation='nearest',cmap='winter')
plt.colorbar()
ax=plt.gca()
ax.set_yticks(range(I.shape[0]))
ax.set_yticklabels(['']*a.shape[0]+['color','rel len','abs len'])
c1=plt.Circle((-1.5,0),radius=0.4,color='blue',clip_on=False)
c2=plt.Circle((-1.5,1),radius=0.4,color='white',clip_on=False)
c3=plt.Circle((-1.5,2),radius=0.4,color='yellow',clip_on=False)
ax.add_patch(c1);ax.add_patch(c2);ax.add_patch(c3);
c1=plt.Rectangle((-2,3),1,0.2,color='white',clip_on=False)
c2=plt.Rectangle((-2.5,4),1.5,0.2,color='white',clip_on=False)
c3=plt.Rectangle((-3,5),2,0.2,color='white',clip_on=False)
ax.add_patch(c1);ax.add_patch(c2);ax.add_patch(c3);
c1=plt.Rectangle((-2,6),1,0.2,color='gray',clip_on=False)
c2=plt.Rectangle((-2.5,7),1.5,0.2,color='gray',clip_on=False)
c3=plt.Rectangle((-3,8),2,0.2,color='gray',clip_on=False)
c4=plt.Rectangle((-3.5,9),2.5,0.2,color='gray',clip_on=False)
ax.add_patch(c1);ax.add_patch(c2);ax.add_patch(c3);ax.add_patch(c4);
print I[-3,-1]
示例11: plot_samples_distance
def plot_samples_distance(dataset, sortbyattr=None):
"""Plot the euclidean distances between all samples of a dataset.
Parameters
----------
dataset : Dataset
Providing the samples.
sortbyattr : None or str
If None, the samples distances will be in the same order as their
appearance in the dataset. Alternatively, the name of a samples
attribute can be given, which wil then be used to sort/group the
samples, e.g. to investigate the similarity samples by label or by
chunks.
"""
if sortbyattr is not None:
slicer = []
for attr in dataset.sa[sortbyattr].unique:
slicer += \
get_samples_by_attr(dataset, sortbyattr, attr).tolist()
samples = dataset.samples[slicer]
else:
samples = dataset.samples
ed = np.sqrt(squared_euclidean_distance(samples))
pl.imshow(ed, interpolation='nearest')
pl.colorbar()
示例12: plot_mtx
def plot_mtx(mtx=None, title=None, newfig=False, cbar=True, **kwargs):
"""
::
static method for plotting a matrix as a time-frequency distribution (audio features)
"""
if mtx is None or type(mtx) != np.ndarray:
raise ValueError('First argument, mtx, must be a array')
if newfig: P.figure()
dbscale = kwargs.pop('dbscale', False)
bels = kwargs.pop('bels',False)
norm = kwargs.pop('norm',False)
normalize = kwargs.pop('normalize',False)
origin=kwargs.pop('origin','lower')
aspect=kwargs.pop('aspect','auto')
interpolation=kwargs.pop('interpolation','nearest')
cmap=kwargs.pop('cmap',P.cm.gray_r)
clip=-100.
X = scale_mtx(mtx, normalize=normalize, dbscale=dbscale, norm=norm, bels=bels)
i_min, i_max = np.where(X.mean(1))[0][[0,-1]]
X = X[i_min:i_max+1].copy()
if dbscale or bels:
if bels: clip/=10.
P.imshow(P.clip(X,clip,0),origin=origin, aspect=aspect, interpolation=interpolation, cmap=cmap, **kwargs)
else:
P.imshow(X,origin=origin, aspect=aspect, interpolation=interpolation, cmap=cmap, **kwargs)
if title:
P.title(title,fontsize=16)
if cbar:
P.colorbar()
P.yticks(np.arange(0,i_max+1-i_min,3),pc_labels[i_min:i_max+1:3],fontsize=14)
P.xlabel('Tactus', fontsize=14)
P.ylabel('MIDI Pitch', fontsize=14)
P.grid()
示例13: plot_dendrogram_and_matrix
def plot_dendrogram_and_matrix(linkage, matrix, color_threshold=None):
# Compute and plot dendrogram.
fig = pylab.figure(figsize=(20,20))
axdendro = fig.add_axes([0.09,0.1,0.2,0.8])
dendrogram = sch.dendrogram(linkage, color_threshold=color_threshold, orientation='right')
axdendro.set_xticks([])
axdendro.set_yticks([])
# Plot distance matrix.
axmatrix = fig.add_axes([0.3,0.1,0.6,0.8])
index = dendrogram['leaves']
D = matrix[:]
D = D[index,:]
D = D[:,index]
im = axmatrix.matshow(D, aspect='auto', origin='lower')
axmatrix.set_xticks([])
axmatrix.set_yticks([])
# Plot colorbar.
axcolor = fig.add_axes([0.91,0.1,0.02,0.8])
pylab.colorbar(im, cax=axcolor)
# Display and save figure.
fig.show()
raw_input()
return dendrogram
示例14: plot_vel_vs_h3
def plot_vel_vs_h3(maps, out_suffix=''):
xaxis = (np.arange(len(maps.velocity[0])) - ppxf_m31.bhpos_pix[0]) * 0.05
yaxis = (np.arange(len(maps.velocity)) - ppxf_m31.bhpos_pix[1]) * 0.05
yy, xx = np.meshgrid(xaxis, yaxis)
radius = np.hypot(xx, yy)
good = np.where((np.abs(yy) < 0.5) & (np.abs(xx) < 1.0))
plt.scatter(maps.velocity[good], maps.h3[good], c=maps.sigma[good], s=5,
marker='o', vmin=0, vmax=450)
plt.xlim(-700, 0)
plt.ylim(-0.5, 0.5)
plt.colorbar(label='Sigma (km/s)')
plt.axhline(linestyle='--', color='grey')
plt.xlabel('Velocity (km/s)')
plt.ylabel('h3')
plt.savefig(plot_dir + 'vel_vs_h3' + out_suffix + '.png')
plt.clf()
plt.scatter(maps.sigma[good], maps.h3[good], c=maps.velocity[good], s=5,
marker='o', vmin=-700, vmax=0)
plt.xlim(0, 450)
plt.ylim(-0.5, 0.5)
plt.colorbar(label='Velocity (km/s)')
plt.axhline(linestyle='--', color='grey')
plt.xlabel('Sigma (km/s)')
plt.ylabel('h3')
plt.savefig(plot_dir + 'sig_vs_h3' + out_suffix + '.png')
return
示例15: plot_plasma
def plot_plasma(self):
P.tricontourf(self.rzt[:, 0], self.rzt[:, 1],
self.tris, self.beta, 1001, zorder=0)
cticks = P.linspace(0.0, 0.2, 5)
P.colorbar(ticks=cticks, format='%.2f')
P.jet()