本文整理汇总了Python中pylab.close函数的典型用法代码示例。如果您正苦于以下问题:Python close函数的具体用法?Python close怎么用?Python close使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了close函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_elecs_and_neurons
def plot_elecs_and_neurons(neuron_dict, ext_sim_dict, neural_sim_dict):
pl.close('all')
fig_all = pl.figure(figsize=[15,15])
ax_all = fig_all.add_axes([0.1, 0.1, 0.8, 0.8], frameon=False)
for elec in xrange(len(ext_sim_dict['elec_z'])):
ax_all.plot(ext_sim_dict['elec_z'][elec], ext_sim_dict['elec_y'][elec], color='b',\
marker='$E%i$'%elec, markersize=20 )
legends = []
for i, neur in enumerate(neuron_dict):
folder = os.path.join(neural_sim_dict['output_folder'], neuron_dict[neur]['name'])
coor = np.load(os.path.join(folder,'coor.npy'))
x,y,z = coor
n_compartments = len(x)
fig = pl.figure(figsize=[10, 10])
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], frameon=False)
# Plot the electrodes
for elec in xrange(len(ext_sim_dict['elec_z'])):
ax.plot(ext_sim_dict['elec_z'][elec], ext_sim_dict['elec_y'][elec], color='b',\
marker='$%i$'%elec, markersize=20 )
# Plot the neuron
xmid, ymid, zmid = np.load(folder + '/coor.npy')
xstart, ystart,zstart = np.load(folder + '/coor_start.npy')
xend, yend, zend = np.load(folder + '/coor_end.npy')
diam = np.load(folder + '/diam.npy')
length = np.load(folder + '/length.npy')
n_compartments = len(diam)
for comp in xrange(n_compartments):
if comp == 0:
xcoords = pl.array([xmid[comp]])
ycoords = pl.array([ymid[comp]])
zcoords = pl.array([zmid[comp]])
diams = pl.array([diam[comp]])
else:
if zmid[comp] < 0.400 and zmid[comp] > -.400:
xcoords = pl.r_[xcoords, pl.linspace(xstart[comp],
xend[comp], length[comp]*3*1000)]
ycoords = pl.r_[ycoords, pl.linspace(ystart[comp],
yend[comp], length[comp]*3*1000)]
zcoords = pl.r_[zcoords, pl.linspace(zstart[comp],
zend[comp], length[comp]*3*1000)]
diams = pl.r_[diams, pl.linspace(diam[comp], diam[comp],
length[comp]*3*1000)]
argsort = pl.argsort(-xcoords)
ax.scatter(zcoords[argsort], ycoords[argsort], s=20*(diams[argsort]*1000)**2,
c=xcoords[argsort], edgecolors='none', cmap='gray')
ax_all.plot(zmid[0], ymid[0], marker='$%i$'%i, markersize=20, label='%i: %s' %(i, neur))
#legends.append('%i: %s' %(i, neur))
ax.axis(ext_sim_dict['plot_range'])
ax.axis('equal')
ax.axis(ext_sim_dict['plot_range'])
ax.set_xlabel('z [mm]')
ax.set_ylabel('y [mm]')
fig.savefig(os.path.join(neural_sim_dict['output_folder'],\
'neuron_figs', '%s.png' % neur))
ax_all.axis('equal')
ax.axis(ext_sim_dict['plot_range'])
ax_all.set_xlabel('z [mm]')
ax_all.set_ylabel('y [mm]')
ax_all.legend()
fig_all.savefig(os.path.join(neural_sim_dict['output_folder'], 'fig.png'))
示例2: testTelescope
def testTelescope(self):
import matplotlib
matplotlib.use('AGG')
import matplotlib.mlab as ml
import pylab as pl
import time
w0 = 8.0
k = 2*np.pi/3.0
gb = GaussianBeam(w0, k)
lens = ThinLens(150, 150)
gb2 = lens*gb
self.assertAlmostEqual(gb2._z0, gb._z0 + 2*150.0)
lens2 = ThinLens(300, 600)
gb3 = lens2*gb2
self.assertAlmostEqual(gb3._z0, gb2._z0 + 2*300.0)
self.assertAlmostEqual(gb._w0, gb3._w0/2.0)
z = np.arange(0, 150)
z2 = np.arange(150, 600)
z3 = np.arange(600, 900)
pl.plot(z, gb.w(z, k), z2, gb2.w(z2, k), z3, gb3.w(z3, k))
pl.grid()
pl.xlabel('z')
pl.ylabel('w')
pl.savefig('testTelescope1.png')
time.sleep(0.1)
pl.close('all')
示例3: plotEventTime
def plotEventTime(library, num, eventNames, sizes, times, events, filename = None):
from pylab import close, legend, plot, savefig, show, title, xlabel, ylabel
import numpy as np
close()
arches = sizes.keys()
bs = events[arches[0]].keys()[0]
data = []
names = []
for event, color in zip(eventNames, ['b', 'g', 'r', 'y']):
for arch, style in zip(arches, ['-', ':']):
if event in events[arch][bs]:
names.append(arch+'-'+str(bs)+' '+event)
data.append(sizes[arch][bs])
data.append(np.array(events[arch][bs][event])[:,0])
data.append(color+style)
else:
print 'Could not find %s in %s-%d events' % (event, arch, bs)
print data
plot(*data)
title('Performance on '+library+' Example '+str(num))
xlabel('Number of Dof')
ylabel('Time (s)')
legend(names, 'upper left', shadow = True)
if filename is None:
show()
else:
savefig(filename)
return
示例4: plot
def plot(self, filesuffix=('.png',)):
pylab.figure()
kPluses = 10**numpy.linspace(0, 3, 100)
kMinuses = 10**numpy.linspace(6, 9, 100)
figureOfMerits = numpy.zeros((len(kPluses), len(kMinuses), 4), 'd')
for i, kPlus in enumerate(kPluses):
for j, kMinus in enumerate(kMinuses):
figureOfMerits[i, j, :] = self.figureOfMerit(self.generateData({'kPlus' : kPlus, 'kMinus' : kMinus}))
data = self.generateData({'kPlus' : kPluses[0], 'kMinus' : kMinuses[0]})
self._contourf(kMinuses, kPluses, figureOfMerits, data)
pylab.xticks((10**6, 10**7, 10**8, 10**9), fontsize=self.fontsize)
pylab.yticks((10**0, 10**1, 10**2, 10**3), fontsize=self.fontsize)
pylab.xlabel(r'$k^-$ $\left(1\per\metre\right)$', fontsize=self.fontsize)
pylab.ylabel(r'$k^+$ $\left(\power{\metre}{3}\per\mole\cdot\second\right)$', fontsize=self.fontsize)
pylab.text(2 * 10**6, 7 * 10**2, r'I', fontsize=self.fontsize)
pylab.text(3 * 10**7, 7 * 10**2, r'II', fontsize=self.fontsize)
pylab.text(6 * 10**8, 7 * 10**2, r'III', fontsize=self.fontsize)
pylab.text(6 * 10**8, 7 * 10**1, r'IV', fontsize=self.fontsize)
for fP, kPlus, paxeslabel in ((1.143,3.51e+00, False), (0.975, 9.33e+00, False), (0.916, 3.51e+01, False), (0.89, 9.33e+01, False), (0.87, 3.51e+02, True)):
for fM, kMinus, maxeslabel in ((1.4, 2.48e+06, False), (1.07, 7.05e+6, False), (0.96, 2.48e+07, False), (0.91, 7.05e+7, False), (0.88, 2.48e+08, True)):
xpos = (numpy.log10(kMinus) - 6.) / 3. * fM
ypos = numpy.log10(kPlus) / 3. * fP
self.makeBackGroundPlot({'kPlus' : kPlus, 'kMinus' : kMinus}, xpos, ypos, axeslabel=paxeslabel and maxeslabel)
for fs in filesuffix:
pylab.savefig('kPlusVkMinus' + fs)
pylab.close('all')
示例5: log_posterior
def log_posterior(self,theta):
model_g1 , model_g2, limit_mask , _ , _ = self.draw_model(theta)
likelihood = self.log_likelihood(model_g1,model_g2,limit_mask)
prior = self.log_prior(theta)
if not np.isfinite(prior):
posterior = -np.inf
else:
# use no info from prior for now
posterior = likelihood
if logger.level == logging.DEBUG:
n_progress = 10
elif logger.level == logging.INFO:
n_progress = 1000
if self.n_model_evals % n_progress == 0:
logger.info('%7d post=% 2.8e like=% 2.8e prior=% 2.4e M200=% 6.3e ' % (self.n_model_evals,posterior,likelihood,prior,theta[0]))
if np.isnan(posterior):
import pdb; pdb.set_trace()
if self.save_all_models:
self.plot_residual_g1g2(model_g1,model_g2,limit_mask)
pl.suptitle('model post=% 10.8e M200=%5.2e' % (posterior,theta[0]) )
filename_fig = 'models/res2.%04d.png' % self.n_model_evals
pl.savefig(filename_fig)
logger.debug('saved %s' % filename_fig)
pl.close()
return posterior
示例6: plot_anat
def plot_anat(brain):
import os.path
import pylab as pl
from nibabel import load
from nipy.labs import viz
import numpy as np
img = load(brain)
data = img.get_data()
data[np.isnan(data)] = 0
affine = img.get_affine()
viz.plot_anat(anat=data, anat_affine=affine, draw_cross=False, slicer='x')
x_view = os.path.abspath('x_view.png')
y_view = os.path.abspath('y_view.png')
z_view = os.path.abspath('z_view.png')
pl.savefig(x_view,bbox_inches='tight')
viz.plot_anat(anat=data, anat_affine=affine, draw_cross=False, slicer='y')
pl.savefig(y_view,bbox_inches='tight')
viz.plot_anat(anat=data, anat_affine=affine, draw_cross=False, slicer='z')
pl.savefig(z_view,bbox_inches='tight')
images = [x_view, y_view, z_view]
pl.close()
return images
示例7: plot_gc_distribution
def plot_gc_distribution(pp, data):
names = data.keys()
# Plot the 2D histogram of coverage vs gc
for name in names:
x = [ i * 100 for i in data[name][GC_DISTRIBUTION_NAME]['gc_samples'] ]
y = data[name][GC_DISTRIBUTION_NAME]['cov_samples']
# Use the median to determine the range to show and round
# to nearest 100 to avoid aliasing artefacts
m = np.median(y)
y_limit = math.ceil( 2*m / 100) * 100
hist,xedges,yedges = np.histogram2d(x,y, bins=[20, 50], range=[ [0, 100.0], [0, y_limit] ])
# draw the plot
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1] ]
pl.imshow(hist.T,extent=extent,interpolation='nearest',origin='lower', aspect='auto')
pl.colorbar()
pl.title(name + ' GC Bias')
pl.xlabel("GC %")
pl.ylabel("k-mer coverage")
pl.savefig(pp, format='pdf')
pl.close()
示例8: plot_fragment_sizes
def plot_fragment_sizes(pp, data):
# Trim outliers from the histograms
names = data.keys()
for name in names:
h = data[name][FRAGMENT_SIZE_NAME]['sizes']
sizes = {}
for i in h:
if i not in sizes:
sizes[i] = 1
else:
sizes[i] += 1
n = len(h)
x = list()
y = list()
sum = 0
for i,j in sorted(sizes.items()):
f = float(j) / n
x.append(i)
y.append(f)
sum += f
pl.plot(x, y)
pl.xlim([0, 1000])
pl.xlabel("Fragment Size (bp)")
pl.ylabel("Proportion")
pl.title("Estimated Fragment Size Histogram")
pl.legend(names)
pl.savefig(pp, format='pdf')
pl.close()
示例9: test
def test(cv,model,data,user,code,comp):
test_power=np.array([float(r[2+comp])/max_power for r in data ])
times=[datetime.datetime.strptime(r[0],'%Y-%m-%d %H:%M:%S UTC') for r in data]
features=np.array([d[8:] for d in data],dtype=np.float)
features[:,0]=features[:,0]/time_scale
jobs=list(set([(r[1],r[2]) for r in data]))
name_features=cv.transform([d[2] for d in data]).toarray()
features=np.hstack((features,name_features))
job_ids=[r[1] for r in data]
prediction=model.predict(features)
rmse=math.sqrt(np.average(((prediction-test_power)*max_power)**2))
nrmse=math.sqrt(np.average(((prediction-test_power)/test_power)**2))
corr=np.corrcoef(prediction,test_power)[0,1]
r2=1-(sum((prediction-test_power)**2)/sum((test_power-np.average(test_power))**2))
pl.figure(figsize=(6,7))
pl.subplot(211)
pl.plot(prediction*max_power,test_power*max_power,'+')
if math.isnan(corr) or math.isnan(r2) or math.isnan(rmse):
pl.title("RMSPE="+str(nrmse)+"RMSE="+str(rmse)+" Corr="+str(corr)+" R2="+str(r2))
else:
pl.title("RMSPE="+str(int(nrmse*1000)/1000.0)+" RMSE="+str(int(rmse*1000)/1000.0)+" Corr="+str(int(corr*1000)/1000.0)+" R2="+str(int(r2*1000)/1000.0))
pl.xlabel('Predicted power')
pl.ylabel('Real power')
pl.plot([max(pl.xlim()[0],pl.ylim()[0]),min(pl.xlim()[1],pl.ylim()[1])],[max(pl.xlim()[0],pl.ylim()[0]),min(pl.xlim()[1],pl.ylim()[1])])
pl.subplot(212)
pl.plot(test_power*max_power)
pl.plot(prediction*max_power)
pl.ylabel('Power')
pl.xlabel('Data point')
#pl.legend(('Real power','Predicted power'))
pl.subplots_adjust(hspace=0.35)
pl.savefig('results'+str(month)+'global'+str(min_train)+'/'+user+code+'.pdf')
pl.close()
pkl.dump((nrmse,rmse,corr,r2,prediction*max_power,test_power*max_power,times,job_ids),file=gzip.open('results'+str(month)+'global'+str(min_train)+'/'+user+'test'+code+'.pkl.gz','w'))
return prediction*max_power
示例10: on_key_press
def on_key_press(event):
global old_t
new_t=time.time()
print old_t-new_t
old_t=new_t
if event.key == '+':
a = axis()
w = a[1] - a[0]
axis([a[0] + w * .2, a[1] - w * .2, a[2], a[3]])
draw()
if event.key in ['-', '\'']:
a = axis()
w = a[1] - a[0]
axis([a[0] - w / 3.0, a[1] + w / 3.0, a[2], a[3]])
draw()
if event.key == '.':
a = axis()
w = a[1] - a[0]
axis([a[0] + w * .2, a[1] + w * .2, a[2], a[3]])
draw()
if event.key == ',':
a = axis()
w = a[1] - a[0]
axis([a[0] - w * .2, a[1] - w * .2, a[2], a[3]])
draw()
if event.key == 'q':
close()
示例11: main
def main():
base_path = "/caps2/tsupinie/1kmf-control/"
temp = goshen_1km_temporal(start=14400, end=14400)
grid = goshen_1km_grid()
n_ens_members = 40
np.seterr(all='ignore')
ens = loadEnsemble(base_path, [ 11 ], temp.getTimes(), ([ 'pt', 'p' ], computeDensity))
ens = ens[0, 0]
zs = decompressVariable(nio.open_file("%s/ena001.hdfgrdbas" % base_path, mode='r', format='hdf').variables['zp'])
xs, ys = grid.getXY()
xs = xs[np.newaxis, ...].repeat(zs.shape[0], axis=0)
ys = ys[np.newaxis, ...].repeat(zs.shape[0], axis=0)
eff_buoy = effectiveBuoyancy(ens, (zs, ys, xs), plane={'z':10})
print eff_buoy
pylab.figure()
pylab.contourf(xs[0], ys[0], eff_buoy[0], cmap=matplotlib.cm.get_cmap('RdBu_r'))
pylab.colorbar()
grid.drawPolitical()
pylab.suptitle("Effective Buoyancy")
pylab.savefig("eff_buoy.png")
pylab.close()
return
示例12: plot_values
def plot_values(X, Y, xlabel, ylabel, suffix, ptype='plot'):
output_filename = constants.ATTRACTIVENESS_FOLDER_NAME + constants.DATASET + '_' + suffix
X1 = [X[i] for i in range(len(X)) if X[i]>0 and Y[i]>0]
Y1 = [Y[i] for i in range(len(X)) if X[i]>0 and Y[i]>0]
X = X1
Y = Y1
pylab.close("all")
pylab.figure(figsize=(8, 7))
#pylab.rcParams.update({'font.size': 20})
pylab.scatter(X, Y)
#pylab.axis(vis.get_bounds(X, Y, False, False))
#pylab.xscale('log')
pylab.yscale('log')
pylab.xlabel(xlabel)
pylab.ylabel(ylabel)
#pylab.xlim(0.1,1)
#pylab.ylim(ymin=0.01)
#pylab.tight_layout()
pylab.savefig(output_filename + '.pdf')
示例13: test_varying_inclination
def test_varying_inclination(self):
#""" Test that the waveform is consistent for changes in inclination
#"""
sigmas = []
incs = numpy.arange(0, 21, 1.0) * lal.PI / 10.0
for inc in incs:
# WARNING: This does not properly handle the case of SpinTaylor*
# where the spin orientation is not relative to the inclination
hp, hc = get_waveform(self.p, inclination=inc)
s = sigma(hp, low_frequency_cutoff=self.p.f_lower)
sigmas.append(s)
f = pylab.figure()
pylab.axes([.1, .2, 0.8, 0.70])
pylab.plot(incs, sigmas)
pylab.title("Vary %s inclination, $\\tilde{h}$+" % self.p.approximant)
pylab.xlabel("Inclination (radians)")
pylab.ylabel("sigma (flat PSD)")
info = self.version_txt
pylab.figtext(0.05, 0.05, info)
if self.save_plots:
pname = self.plot_dir + "/%s-vary-inclination.png" % self.p.approximant
pylab.savefig(pname)
if self.show_plots:
pylab.show()
else:
pylab.close(f)
self.assertAlmostEqual(sigmas[-1], sigmas[0], places=7)
self.assertAlmostEqual(max(sigmas), sigmas[0], places=7)
self.assertTrue(sigmas[0] > sigmas[5])
示例14: CostVariancePlot
def CostVariancePlot(funct,args):
pl=args[0]
x=np.array([])
y=np.array([])
f=np.array([])
z=np.array([])
x=np.append(x,funct.rmsSet[:,0])
y=np.append(y,funct.rmsSet[:,3])
f=np.append(f,funct.rmsSet[:,5])
z=np.append(z,funct.rmsSet[:,4])
v=np.array([])
v=np.append(v,[0])
i=0
while i<len(x):
v=np.append(v,(z[i]/f[i])-(y[i]/f[i])*(y[i]/f[i]))
i+=1
v=np.delete(v,0)
if centroidP(x,v):
pl.set_yscale('log')
pl.set_xscale('log')
else:
pl.ticklabel_format(axis='both', style='sci', scilimits=(-2,5),pad=5,direction="bottom")
pl.axis([0, np.amax(x)+(10*np.amax(x)/100), 0, np.amax(v)+(10*np.amax(v)/100)])
pl.set_xlabel("read memory size",fontsize=8)
pl.set_ylabel("cost",fontsize=8)
pl.set_title("Variance Cost",fontsize=14)
pl.grid(True)
pl.tick_params(axis='x', labelsize=7)
pl.tick_params(axis='y', labelsize=7)
sc=pl.scatter(x,v,c=f,s=6,marker = 'o',lw=0.0,cmap=cmap,norm=norm)
pylab.close()
示例15: plot_quality_scores
def plot_quality_scores(pp, data):
names = data.keys()
# Plot mean quality
for name in names:
mean_quality = data[name][QUALITY_SCORE_NAME]['mean_quality']
indices = range(0, len(mean_quality))
pl.plot(indices, mean_quality, linewidth=2)
pl.ylim([0, 40])
pl.xlabel("Base position")
pl.ylabel("Mean Phred Score")
pl.title("Mean quality score by position")
pl.legend(names, loc="lower left")
pl.savefig(pp, format='pdf')
pl.close()
# Plot >q30 fraction
for name in names:
q30_fraction = data[name][QUALITY_SCORE_NAME]['fraction_q30']
indices = range(0, len(q30_fraction))
pl.plot(indices, q30_fraction)
pl.xlabel("Base position")
pl.ylabel("Fraction at least Q30")
pl.title("Fraction of bases at least Q30")
pl.legend(names, loc="lower left")
pl.savefig(pp, format='pdf')
pl.close()