本文整理汇总了Python中pylab.ceil函数的典型用法代码示例。如果您正苦于以下问题:Python ceil函数的具体用法?Python ceil怎么用?Python ceil使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ceil函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: printTrack
def printTrack( fid , resized , frame , pos , sz ):
p0 = [pos[0]-pylab.floor(sz[0]/2),pos[1]-pylab.ceil(sz[1]/2)]
p1 = [pos[0]+pylab.floor(sz[0]/2),pos[1]+pylab.ceil(sz[1]/2)]
if resized:
p0 = [x*2 for x in p0]
p1 = [x*2 for x in p1]
fid.write(str(frame)+","+str(p0[1])+","+str(p0[0])+","+str(p1[1])+","+str(p1[0])+"\n")
示例2: generate_cord
def generate_cord():
"""
TODO: Pass the parameters as input arguments.
Parameters:
- Fs : sampling frequency
- F0 : frequency of the notes forming chord
- gain : gains of individual notes in the chord
- duration : duration of the chord in second
- alpha : attenuation in KS algorithm
"""
Fs = 48000
# D2, D3, F3, G3, F4, A4, C5, G5
F0 = 440 * pylab.array(
[2**-(31.0/12), 2**-(19.0/12), 2**-(16.0/12), 2**(-14.0/12),
2**-(4.0/12), 1.0, 2**(3.0/12), 2**(10.0/12)])
gain = [1.2, 3.0, 1.0, 2.2, 1.0, 1.0, 1.0, 3.5]
duration = 4.0
alpha = 0.9785
# Number of samples in the chord.
nbsample_chord = Fs * duration
# This is used to correct alpha later, so that all the notes
# decay together (with the same decay rate).
first_duration = pylab.ceil(nbsample_chord / pylab.round_(Fs/F0[0]))
# Initialization.
chord = pylab.zeros(nbsample_chord)
for i, f in enumerate(F0):
print("Working on %g / %g" % (i+1, len(F0)))
# Get M and duration parameter.
current_M = pylab.round_(Fs/f)
current_duration = pylab.ceil(nbsample_chord / current_M)
# Correct current alpha so that all the notes decay together
# (with the same decay rate)
current_alpha = alpha ** (first_duration / current_duration)
# Let Paul's high D on the bass ring a bit longer.
if i == 1:
current_alpha = current_alpha ** 0.8
# Generate input and output of KS algorithm.
x = pylab.rand(current_M)
y = ks(x, current_alpha, int(current_duration))
y = y[:int(nbsample_chord)]
# Construct the chord by adding the generated note (with the
# appropriate gain).
chord = chord + gain[i] * y
return Fs, duration, chord
示例3: plot_spike_histogram
def plot_spike_histogram(spikes, bin=0.1, total_neurons=None):
print 'Plotting activity histogram.'
global figure_dir
pylab.figure(get_free_figure_number())
pylab.clf()
pylab.hist([spike[0] for spike in spikes],
bins=pylab.ceil(max([spike[0] for spike in spikes])/bin))
if total_neurons is not None:
pylab.ylim([0, total_neurons])
pylab.xlim([0., pylab.ceil(max([spike[0] for spike in spikes]))])
pylab.xlabel('Time, ms')
pylab.ylabel('Amount of active neurons')
pylab.title('Average network activity')
pylab.savefig(os.path.join(figure_dir, 'activity.png'))
示例4: getAvgGreenTime
def getAvgGreenTime(intergreen1, intergreen2):
doc = libxml2.parseFile('tls.out')
lNS = doc.xpathEval("count(/tls-states/tlsstate[@phase='0'])")
lWE = doc.xpathEval("count(/tls-states/tlsstate[@phase='2'])")
lIG1 = doc.xpathEval("count(/tls-states/tlsstate[@phase='1'])")
lIG2 = doc.xpathEval("count(/tls-states/tlsstate[@phase='3'])")
doc.freeDoc()
greenNS = lNS / ceil((lIG1 / intergreen1))
greenWE = lWE / ceil((lIG2 / intergreen2))
return greenWE, greenNS
示例5: old_spike_psth
def old_spike_psth(data, t1_ms = -250., t2_ms = 0., bin_ms = 10):
"""Uses data format returned by get_spikes"""
spike_time_ms = data['spike times ms']
N_trials = data['trials']
t2_ms = pylab.ceil((t2_ms - t1_ms) / bin_ms)*bin_ms + t1_ms
N_bins = (t2_ms - t1_ms) / bin_ms
if N_trials > 0:
all_spikes_ms = pylab.array([],dtype=float)
for trial in range(len(spike_time_ms)):
if spike_time_ms[trial] is None:
continue
idx = pylab.find((spike_time_ms[trial] >= t1_ms) &
(spike_time_ms[trial] <= t2_ms))
all_spikes_ms = \
pylab.concatenate((all_spikes_ms, spike_time_ms[trial][idx]))
spike_n_bin, bin_edges = \
pylab.histogram(all_spikes_ms, bins = N_bins,
range = (t1_ms, t2_ms), new = True)
spikes_per_trial_in_bin = spike_n_bin/float(N_trials)
spike_rate = 1000*spikes_per_trial_in_bin/bin_ms
else:
spike_rate = pylab.nan
bin_center_ms = (bin_edges[1:] + bin_edges[:-1])/2.0
return spike_rate, bin_center_ms
示例6: spike_psth
def spike_psth(spike_time_ms, t1_ms = -50., t2_ms = 250., bin_ms = 1):
"""."""
N_trials = len(spike_time_ms)
t2_ms = pylab.ceil((t2_ms - t1_ms) / bin_ms)*bin_ms + t1_ms
N_bins = (t2_ms - t1_ms) / bin_ms
spike_count_by_trial = pylab.zeros((N_trials,N_bins),dtype=float)
if N_trials > 0:
all_spikes_ms = pylab.array([],dtype=float)
for trial in range(len(spike_time_ms)):
if spike_time_ms[trial] is None:
continue
idx = pylab.find((spike_time_ms[trial] >= t1_ms) &
(spike_time_ms[trial] <= t2_ms))
spike_count_by_trial[trial,:], bin_edges = \
pylab.histogram(spike_time_ms[trial][idx], bins = N_bins,
range = (t1_ms, t2_ms))
spike_rate = 1000*spike_count_by_trial.mean(axis=0)/bin_ms
else:
spike_rate = pylab.nan
dummy, bin_edges = \
pylab.histogram(None, bins = N_bins, range = (t1_ms, t2_ms))
bin_center_ms = (bin_edges[1:] + bin_edges[:-1])/2.0
return spike_rate, spike_count_by_trial, bin_center_ms
示例7: panel
def panel():
global Ras,Rms,Ie,Ies
global tstart
global pan,t0,t1
#Pulse start time
tstart = 0.1
#Ras = [1.,500.,20.] #Ohm*cm
#Rms = [200.,10000.,200.] #Ohm*cm^2
Ras = [5.0, 500.0, 50.0] #Ohm*cm
Rms = [200.0, 10000.0, 1000.0] #Ohm*cm^2
Ie = 4. #nA
Ies = pl.c_[pl.ones_like(ns.t)]
Ies[:pl.ceil(tstart/ns.dt)] = 0.
t0 = 0.101
t1 = 0.6
pan = simulationpanel.SimulationPanel()
pan.Move((640,600))
pan.setdict(globals())
pan.addcommand('sim()')
pan.addcommand('plottao()')
pan.addvar('Ras')
pan.addvar('Rms')
pan.addvar('Ie')
pan.addvar('t0')
pan.addvar('t1')
示例8: displayData
def displayData(X):
print "Visualizing"
m, n = X.shape
width = round(sqrt(n))
height = width
display_rows = int(floor(sqrt(m)))
display_cols = int(ceil(m/display_rows))
print "Cell width:", width
print "Cell height:", height
print "Display rows:", display_rows
print "Display columns:", display_cols
display = zeros((display_rows*height,display_cols*width))
# Iterate through the training sets, reshape each one and populate
# the display matrix with the letter matrixes.
for xrow in range(0, m):
rowindex = divide(xrow, display_cols)
columnindex = remainder(xrow, display_cols)
rowstart = int(rowindex*height)
rowend = int((rowindex+1)*height)
colstart = int(columnindex*width)
colend = int((columnindex+1)*width)
display[rowstart:rowend, colstart:colend] = X[xrow,:].reshape(height,width).transpose()
imshow(display, cmap=get_cmap('binary'), interpolation='none')
# Show plot without blocking
draw()
示例9: decodefft
def decodefft(finf,data, dropheights = False):
#output: decoded data with the number of heights reduced
#two variables are added to the finfo class:
#deco_num_hei, deco_hrange
#data must be arranged:
# (channels,heights,times) (C-style, profs change faster)
#fft along the entire(n=None) acquired heights(axis=1), stores in data
num_chan = data.shape[0]
num_ipps = data.shape[2]
num_codes = finf.subcode.shape[0]
num_bauds = finf.subcode.shape[1]
NSA = finf.num_hei + num_bauds - 1
uppower = py.ceil(py.log2(NSA))
extra = int(2**uppower - finf.num_hei)
NSA = int(2**uppower)
fft_code = py.fft(finf.subcode,n = NSA,axis=1).conj()
data = py.fft(data,n=NSA,axis=1) #n= None: no cropped data or padded zeros
for ch in range(num_chan):
for ipp in range(num_ipps):
code_i = ipp % num_codes
data[ch,:,ipp] = data[ch,:,ipp] * fft_code[code_i,:]
data=py.ifft(data,n=NSA,axis=1) #fft along the heightsm
if dropheights:
return data[:,:-extra-(num_bauds-1),:]
else:
return data[:,:-extra,:]
示例10: plot_viz_of_stochs
def plot_viz_of_stochs(vars, viz_func, figsize=(8,6)):
""" Plot autocorrelation for all stochs in a dict or dict of dicts
:Parameters:
- `vars` : dictionary
- `viz_func` : visualazation function such as ``acorr``, ``show_trace``, or ``hist``
- `figsize` : tuple, size of figure
"""
pl.figure(figsize=figsize)
cells, stochs = tally_stochs(vars)
# for each stoch, make an autocorrelation plot for each dimension
rows = pl.floor(pl.sqrt(cells))
cols = pl.ceil(cells/rows)
tile = 1
for s in sorted(stochs, key=lambda s: s.__name__):
trace = s.trace()
if len(trace.shape) == 1:
trace = trace.reshape((len(trace), 1))
for d in range(len(pl.atleast_1d(s.value))):
pl.subplot(rows, cols, tile)
viz_func(pl.atleast_2d(trace)[:, d])
pl.title('\n\n%s[%d]'%(s.__name__, d), va='top', ha='center', fontsize=8)
tile += 1
示例11: gauss1
def gauss1(s, func):
'''Construct a 1-D Gaussian mask'''
# for sufficient result use ceil(6s) by ceil(6s) for a gaussian filter
# read: http://en.wikipedia.org/wiki/Gaussian_blur for more explaination
s = float(s)
r = int(ceil(3 * s))
n = int(ceil(6 * s) + 1)
# n * n zero matrix of floats
gaussFilter = zeros((n), dtype=float)
# fill gaussFilter[] with gaussian values on x
for x in range(n):
gaussFilter[x] = func(s, x - r)
return gaussFilter
示例12: imshow
def imshow(self,shape,only=None):
from pylab import subplot,imshow,cm,title,sqrt,ceil
if only is None:
only=list(range(len(self.weights)))
L=len(only)
c=ceil(sqrt(L))
r=ceil(L/c)
for i,idx in enumerate(only):
w=self.weights[idx]
w=w.reshape(shape)
subplot(r,c,i+1)
imshow(w,cmap=cm.gray,interpolation='nearest')
title('PC %d' % (idx))
示例13: show_blocking
def show_blocking(self, plotfile=''):
'''Print out the blocking data and show a graph of the behaviour of the standard error with block size.
If plotfile is given, then the graph is saved to the specifed file rather than being shown on screen.'''
# print blocking output
# header...
print '%-11s' % ('# of blocks'),
fmt = '%-14s %-15s %-18s '
header = ('mean (X_%i)', 'std.err. (X_%i)', 'std.err.err. (X_%i)')
for data in self.data:
data_header = tuple(x % (data.data_col) for x in header)
print fmt % data_header,
for key in self.covariance:
str = 'cov(X_%s,X_%s)' % tuple(key.split(','))
print '%-14s' % (str),
for key in self.combination_stats:
fmt = ['mean (X_%s'+self.combination+'X_%s)', 'std.err. (X_%s'+self.combination+'X_%s)']
strs = tuple([s % tuple(key.split(',')) for s in fmt])
print '%-16s %-18s' % strs,
print
# data
block_fmt = '%-11i'
fmt = '%-#14.12g %-#12.8e %-#18.8e '
for s in range(len(self.data[0].stats)):
print block_fmt % (self.data[0].stats[s].block_size),
for data in self.data:
print fmt % (data.stats[s].mean, data.stats[s].se, data.stats[s].se_error),
for cov in self.covariance.itervalues():
print '%+-#14.5e' % (cov[s]),
for comb in self.combination_stats.itervalues():
print '%-#16.12f %-#18.12e' % (comb[s].mean, comb[s].se),
print
# plot standard error
if PYLAB:
# one sub plot per data set.
nplots = len(self.data)
for (i, data) in enumerate(self.data):
pylab.subplot(nplots, 1, i+1)
blocks = [stat.block_size for stat in data.stats]
se = [stat.se for stat in data.stats]
se_error = [stat.se_error for stat in data.stats]
pylab.semilogx(blocks, se, 'g-', basex=2, label=r'$\sigma(X_{%s})$' % (data.data_col))
pylab.errorbar(blocks, se, yerr=se_error, fmt=None, ecolor='g')
xmax = 2**pylab.ceil(pylab.log2(blocks[0]+1))
pylab.xlim(xmax, 1)
pylab.ylabel('Standard error')
pylab.legend(loc=2)
if i != nplots - 1:
# Don't label x axis points.
ax = pylab.gca()
ax.set_xticklabels([])
pylab.xlabel('# of blocks')
if plotfile:
pylab.savefig(plotfile)
else:
pylab.draw()
pylab.show()
示例14: calculate_activity_histogram
def calculate_activity_histogram(spikes, total_neurons, bin=0.1):
"""Calculates histogram and bins specifically for neurons.
Bins are provided in seconds instead of milliseconds."""
hist, bin_edges = pylab.histogram(
[spike[0] for spike in spikes],
bins=pylab.ceil(max([spike[0] for spike in spikes])/bin))
bin_edges = pylab.delete(bin_edges, len(bin_edges)-1) / 1000.
return [[float(i)/total_neurons for i in hist], bin_edges]
示例15: plot
def plot(self,only=None):
from pylab import plot,subplot,sqrt,ceil,title
weights=self.weights_xh.T
if only is None:
only=list(range(len(weights)))
L=len(only)
c=ceil(sqrt(L))
r=ceil(L/c)
for i,idx in enumerate(only):
w=weights[idx]
subplot(r,c,i+1)
plot(w,'-o')
title('Filter %d' % (idx))