当前位置: 首页>>代码示例>>Python>>正文


Python pylab.bar函数代码示例

本文整理汇总了Python中pylab.bar函数的典型用法代码示例。如果您正苦于以下问题:Python bar函数的具体用法?Python bar怎么用?Python bar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了bar函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: reaction_times_second_step

def reaction_times_second_step(sessions, fig_no = 1):
    'Reaction times for second step pokes as function of common / rare transition.'
    sec_step_IDs = ut.get_IDs(sessions[0].IDs, ['right_active', 'left_active'])
    median_RTs_common = np.zeros(len(sessions))
    median_RTs_rare   = np.zeros(len(sessions))
    for i,session in enumerate(sessions):
        event_times = ut.get_event_times(session.time_stamps, session.event_codes, session.IDs)
        left_active_times = event_times['left_active']
        right_active_times = event_times['right_active']
        left_reaction_times  = _latencies(left_active_times,  event_times['left_poke'])
        right_reaction_times = _latencies(right_active_times, event_times['right_poke'])
        ordered_reaction_times = np.hstack((left_reaction_times,right_reaction_times))\
                                 [np.argsort(np.hstack((left_active_times,right_active_times)))]
        transitions = session.blocks['trial_trans_state'] == session.CTSO['transitions']  # common vs rare.                 
        median_RTs_common[i] = np.median(ordered_reaction_times[ transitions])
        median_RTs_rare[i]    = np.median(ordered_reaction_times[~transitions])
    mean_RT_common = 1000 * np.mean(median_RTs_common)
    mean_RT_rare   = 1000 * np.mean(median_RTs_rare)
    SEM_RT_common = 1000 * np.sqrt(np.var(median_RTs_common/len(sessions)))
    SEM_RT_rare   = 1000 * np.sqrt(np.var(median_RTs_rare  /len(sessions)))
    p.figure(fig_no)
    p.bar([1,2],[mean_RT_common, mean_RT_rare], yerr = [SEM_RT_common,SEM_RT_rare])
    p.xlim(0.8,3)
    p.ylim(mean_RT_common * 0.8, mean_RT_rare * 1.1)
    p.xticks([1.4, 2.4], ['Common', 'Rare'])
    p.title('Second step reaction times')
    p.ylabel('Reaction time (ms)')
    print('Paired t-test P value: {}'.format(ttest_rel(median_RTs_common, median_RTs_rare)[1]))
开发者ID:dydcfg,项目名称:Two_Step,代码行数:28,代码来源:plotting.py

示例2: plot_importances

def plot_importances(imp, clfName, obj):
    imp=np.vstack(imp)
    print imp
    mean_importance = np.mean(imp,axis=0)
    std_importance = np.std(imp,axis=0)
    indices = np.argsort(mean_importance)[::-1]
    print indices
    print featureNames
    featureList = []
    # num_features = len(featureNames)
    print("Feature ranking:")
    for f in range(num_features):
        featureList.append(featureNames[indices[f]])
        print("%d. feature %s (%.2f)" % (f, featureNames[indices[f]], mean_importance[indices[f]]))
    fig = pl.figure(figsize=(8,6),dpi=150)
    pl.title("Feature importances",fontsize=30)
    pl.bar(range(num_features), mean_importance[indices],
            yerr = std_importance[indices], color=paired[0], align="center",
            edgecolor=paired[0],ecolor=paired[1])
    pl.xticks(range(num_features), featureList, size=15,rotation=90)
    pl.ylabel("Importance",size=30)
    pl.yticks(size=20)
    pl.xlim([-1, num_features])
    # fix_axes()
    pl.tight_layout()
    save_path = 'plots/'+obj+'/'+clfName+'_feature_importances.pdf'
    fig.savefig(save_path)
开发者ID:rexshihaoren,项目名称:MSPrediction-Python,代码行数:27,代码来源:EnjoyLifePred.py

示例3: command

def command(args):
    from pylab import bar, yticks, subplots_adjust, show
    from numpy import arange

    import sr.tools.bom.bom as bom
    import sr.tools.bom.parts_db as parts_db

    db = parts_db.get_db()
    m = bom.MultiBoardBom(db)
    m.load_boards_args(args.arg)
    m.prime_cache()

    prices = []

    for srcode, pg in m.items():
        if srcode == "sr-nothing":
            continue

        prices.append((srcode, pg.get_price()))

    prices.sort(key=lambda x: x[1])

    bar(0, 0.8, bottom=range(0, len(prices)), width=[x[1] for x in prices],
        orientation='horizontal')

    yticks(arange(0, len(prices)) + 0.4, [x[0] for x in prices])

    subplots_adjust(left=0.35)

    show()
开发者ID:PeterJCLaw,项目名称:tools,代码行数:30,代码来源:price_graph.py

示例4: check_distribution

def check_distribution():
    
    f = lambda x: math.atan2(x[0],x[1])
    region=lambda x: l2norm(x)<=1.0
    
    drift=lambda t: array((0.7, 0.5 ))
    
    n_samples = 10000
    
    n_measure_sets = 16
    measure_sets = [ interval( 2.*pi*k/n_measure_sets-pi, 2.*pi*(k+1)/n_measure_sets-pi ) for k in range(n_measure_sets) ]
    
    
    x = (0.3, 0. )
    dt = 0.02
    
    distribution, distribution_nocom = hitting_value_distribuion( n_samples, measure_sets, x, f, dt, drift, region )
    
    for k in distribution:
        print k
    
    print 'sum:', sum(distribution)
    
    print '\n', mean(distribution), var(distribution), sig_m(distribution)
    
    
    
    import pylab as p
    print '\n\n'
    
    left = [  (2.*k/n_measure_sets-1)*pi  for k in range(n_measure_sets) ]
    
    p.bar(left, distribution, 2.*pi/n_measure_sets )
    p.plot(left, distribution_nocom, 'ro' )
    p.show()
开发者ID:nmaxwell,项目名称:research_old,代码行数:35,代码来源:verify_distributions.py

示例5: plot_question

def plot_question(fname, question_text, data):
    import pylab
    import numpy as np
    from matplotlib.font_manager import FontProperties
    from matplotlib.text import Text
    pylab.figure().clear()
    pylab.title(question_text)
    #pylab.xlabel("Verteilung")
    #pylab.subplot(101)
    if True or len(data) < 3:
        width = 0.95
        pylab.bar(range(len(data)), [max(y, 0.01) for x, y in data], 0.95, color="g")
        pylab.xticks([i+0.5*width for i in range(len(data))], [x for x, y in data])
        pylab.yticks([0, 10, 20, 30, 40, 50])
        #ind = np.arange(len(data))
        #pylab.bar(ind, [y for x, y in data], 0.95, color="g")
        #pylab.ylabel("#")
        #pylab.ylim(ymax=45)
        #pylab.ylabel("Antworten")
        #pylab.xticks(ind+0.5, histo.get_ticks())
        #pylab.legend(loc=3, prop=FontProperties(size="smaller"))
        ##pylab.grid(True)
    else:
        pylab.pie([max(y, 0.1) for x, y in data], labels=[x for x, y in data], autopct="%.0f%%")
    pylab.savefig(fname, format="png", dpi=75)
开发者ID:digitalarbeiter,项目名称:web-survey-tdi,代码行数:25,代码来源:eval-surveys.py

示例6: plotSpectrum

 def plotSpectrum(self,spectrum,title):
     fig=plt.figure(figsize=self.figsize, dpi=self.dpi);plt.ioff()
     index, bar_width = spectrum.index.values,0.2
     for i in range(spectrum.shape[1]):
         plt.bar(index + i*bar_width, spectrum.icol(i).values, bar_width, color=mpl.cm.jet(1.*i/spectrum.shape[1]), label=spectrum.columns[i])
     plt.xlabel('Allele') ;plt.xticks(index + 3*bar_width, index) ;plt.legend();
     plt.title('Figure {}. {}'.format(self.fignumber, title),fontsize=self.titleSize); self.pdf.savefig(fig);self.fignumber+=1
开发者ID:airanmehr,项目名称:popgen,代码行数:7,代码来源:Plot.py

示例7: bar_plot_1

def bar_plot_1(data):
    """Generates bar plot from data"""
    x_labels=[a for (a,b) in data]
    y_data=[b for (a,b) in data]
    # Create chart
    pos=range(1,len(x_labels)+1)
    P.figure(1,figsize=(11,7))
    P.bar(left=pos,height=y_data,log=True,width=.6,color="lightgrey",edgecolor="#8094B6")
    pos2=[a+.3 for a in pos]
    P.xticks(pos2,x_labels)
    P.title("Evolution of network data size over time",fontsize="x-large")
    P.xlabel("Network data sets (year published)",fontsize="large")
    P.ylabel("Number of vertices [log(N)]",fontsize="large")
    text_color="black"
    for i in range(len(y_data)):
        if i<2:
            P.text(pos[i]+0.01,y_data[i]+5,int_to_scinot(y_data[i]),color=text_color)
        elif i==2:
            P.text(pos[i]+0.01,y_data[i]+100,int_to_scinot(y_data[i]),color=text_color)
        elif i==3:
            P.text(pos[i]+0.01,y_data[i]+1000,int_to_scinot(y_data[i]),color=text_color)
        elif i==4:
            P.text(pos[i]+0.01,y_data[i]+100000,int_to_scinot(y_data[i]),color=text_color)
        else:
            P.text(pos[i]+0.01,y_data[i]+1000000,int_to_scinot(y_data[i]),color=text_color)
    P.savefig("../../images/figures/net_size_evo.png",dpi=100,format="png")
开发者ID:Mondego,项目名称:pyreco,代码行数:26,代码来源:allPythonContent.py

示例8: plot_stable_features

def plot_stable_features(X_train,y_train,featnames,**kwargs):
    from sklearn.linear_model import LassoLarsCV,RandomizedLasso

    n_resampling = kwargs.pop('n_resampling',200)
    n_jobs = kwargs.pop('n_jobs',-1)
    
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', UserWarning)
        # estimate alphas via xvalidation 
        lars_cv = LassoLarsCV(cv=6,n_jobs=n_jobs).fit(X_train,y_train)        
        alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6)

        clf = RandomizedLasso(alpha=alphas, random_state=42, n_jobs=n_jobs,
                              n_resampling=n_resampling)
        clf.fit(X_train,y_train)
        importances = clf.scores_ 
        indices = np.argsort(importances)[::-1]

        pl.bar(range(len(featnames)), importances[indices],
               color="r", align="center")
        pl.xticks(np.arange(len(featnames))+0.5,featnames[indices],
                  rotation=45,horizontalalignment='right')
        pl.xlim(-0.5,len(featnames)-0.5)
        pl.subplots_adjust(bottom=0.2)
        
        pl.ylim(0,np.max(importances)*1.01)
        pl.ylabel('Selection frequency (%) for %d resamplings '%n_resampling)
        pl.title("Stability Selection: Selection Frequencies")
开发者ID:caseyjlaw,项目名称:activecontainer,代码行数:28,代码来源:sklearn_utils.py

示例9: plot_importances

def plot_importances(clf,featnames,outfile,**kwargs):

    pl.figure(figsize=(16,4))

    featnames = np.array(featnames)
    importances = clf.feature_importances_
    imp_std = np.std([tree.feature_importances_ for tree in clf.estimators_],
                     axis=0)
    indices = np.argsort(importances)[::-1]

    #for featname in featnames[indices]:
    #    print featname

    trunc_featnames = featnames[indices]
    trunc_featnames = trunc_featnames[0:24]
    trunc_importances = importances[indices]
    trunc_importances = trunc_importances[0:24]
    trunc_imp_std = imp_std[indices]
    trunc_imp_std = trunc_imp_std[0:24]

    pl.bar(range(len(trunc_featnames)), trunc_importances,
           color="r", yerr=trunc_imp_std, align="center")
    pl.xticks(np.arange(len(trunc_featnames))+0.5,trunc_featnames,rotation=45,
              horizontalalignment='right')
    pl.xlim(-0.5,len(trunc_featnames)-0.5)
    pl.ylim(0,np.max(trunc_importances+trunc_imp_std)*1.01)

#    pl.bar(range(len(featnames)), importances[indices],
#           color="r", yerr=imp_std[indices], align="center")
#    pl.xticks(np.arange(len(featnames))+0.5,featnames[indices],rotation=45,
#              horizontalalignment='right')
#    pl.xlim(-0.5,len(featnames)-0.5)
#    pl.ylim(0,np.max(importances+imp_std)*1.01)
    pl.subplots_adjust(bottom=0.2)
    pl.show()
开发者ID:caseyjlaw,项目名称:activecontainer,代码行数:35,代码来源:sklearn_utils.py

示例10: plot

def plot(xdata, ydata, std, title, xlabel, ylabel, label, color, alpha, miny, maxy, num=1):
    import matplotlib

    # matplotlib.use('Agg')
    import pylab
    import matplotlib.font_manager

    # all goes to figure num
    pylab.figure(num=num, figsize=(9.5, 9))
    pylab.gca().set_position([0.10, 0.20, 0.85, 0.60])
    # let the plot have fixed y-axis scale
    ywindow = maxy - miny
    # pylab.gca().set_ylim(miny, maxy+ywindow/5.0)
    pylab.gca().set_ylim(miny, maxy)
    # pylab.plot(xdata, ydata, 'b.', label=label, color=color)
    # pylab.plot(xdata, ydata, 'b-', label='_nolegend_', color=color)
    pylab.bar(xdata, ydata, 0.9, label=label, color=color, alpha=alpha)
    t = pylab.title(title)
    # http://old.nabble.com/More-space-between-title-and-secondary-x-axis-td31722298.html
    t.set_y(1.05)
    pylab.xlabel(xlabel)
    pylab.ylabel(ylabel)
    prop = matplotlib.font_manager.FontProperties(size=12)
    leg = pylab.legend(loc="upper right", fancybox=True, prop=prop)
    leg.get_frame().set_alpha(0.5)
开发者ID:ryancoleman,项目名称:lotsofcoresbook2code,代码行数:25,代码来源:pbe_gpaw_nrel_plot.py

示例11: _make_var_histogram

def _make_var_histogram(values, logp, nbins, ci, weights):
    # Produce a histogram
    hist, bins = np.histogram(values, bins=nbins, range=ci,
                              #new=True,
                              normed=True, weights=weights)

    # Find the max likelihood for values in each bin
    edges = np.searchsorted(values, bins)
    histbest = [np.max(logp[edges[i]:edges[i+1]])
                if edges[i] < edges[i+1] else -inf
                for i in range(nbins)]

    # scale to marginalized probability with peak the same height as hist
    histbest = np.exp(np.asarray(histbest) - max(logp)) * np.max(hist)

    import pylab
    # Plot the histogram
    pylab.bar(bins[:-1], hist, width=bins[1]-bins[0])

    # Plot the kernel density estimate
    #density = KDE1D(values)
    #x = linspace(bins[0],bins[-1],100)
    #pylab.plot(x, density(x), '-k', hold=True)

    # Plot the marginal maximum likelihood
    centers = (bins[:-1]+bins[1:])/2
    pylab.plot(centers, histbest, '-g', hold=True)
开发者ID:richardsheridan,项目名称:bumps,代码行数:27,代码来源:views.py

示例12: show_char_use

def show_char_use(uchars, ucount):
	"""
	Plot spread of characters used in different sets:
	- digits
	- lowercase
	- uppercase
	- symbols (not alphanumeric)
	"""

	# Symbols are all printable characters minus alphanumerics
	charsymbols = "".join(set.difference(set(string.printable), set(string.digits+string.ascii_letters)))

	charsets = [string.digits, string.ascii_lowercase, string.ascii_uppercase, charsymbols]
	charsetnames = ['digits', 'lowercase', 'uppercase', 'symbols']

	for idx, (cs, csn) in enumerate(zip(charsets, charsetnames)):
		# Select charset subset
		thischars = [i for i in uchars if i in cs]
		thiscount = [c for i, c in zip(uchars, ucount) if i in cs]
		thiscountn = [t/(1.0*sum(thiscount)) for t in thiscount]
		if (HAVE_PYLAB):
			pylab.figure(100+idx);
			pylab.title("Spread of %s" % csn)
			thisidx = numpy.arange(len(thiscount))
			pylab.bar(thisidx-0.4, thiscountn)
			pylab.xticks(thisidx, thischars)
		else:
			print "Spread of %s" % csn
			for c, n in zip(thischars, thiscountn):
				# There are N=len(thischars) characters in this set,
				# so on average each occurs 1/N times. A terminal window
				# is 80 chars wide, which we equate to 4/N.
				bar = "="*int(round(70.0/4.0*n*len(thischars)))
				print " %s %2.0f %s" % (c, n*100, bar)
开发者ID:tvwerkhoven,项目名称:pwcheck,代码行数:34,代码来源:pwcheck.py

示例13: plotHousing

def plotHousing(impression):
    """假设impression是一个字符串,必须是‘flat’, ‘volatile’或者是‘fair’
       生成房价随时间变化的图表"""
    f = open("midWestHousingPrices.txt", "r")
    # 文件的每一行是年季度价格
    # 数据来自美国中部区域
    labels, prices = ([], [])
    for line in f:
        year, quarter, price = line.split(" ")
        label = year[2:4] + "\n Q" + quarter[1]
        labels.append(label)
        prices.append(float(price) / 1000)
    quarters = pylab.arange(len(labels))
    width = 0.8
    if impression == "flat":
        pylab.semilogy()
    pylab.bar(quarters, prices, width)
    pylab.xticks(quarters + width / 2.0, labels)
    pylab.title("Housing Prices in U.S. Midwest")
    pylab.xlabel("Quarter")
    pylab.ylabel("Average Price($1,000's)")
    if impression == "flat":
        pylab.ylim(10, 10 ** 3)
    elif impression == "volatile":
        pylab.ylim(180, 220)
    elif impression == "fair":
        pylab.ylim(150, 250)
    else:
        raise ValueError
开发者ID:starschen,项目名称:learning,代码行数:29,代码来源:16_2图表会骗人.py

示例14: reaction_times_first_step

def reaction_times_first_step(sessions):
    median_reaction_times = np.zeros([len(sessions),4])
    all_reaction_times = []
    for i,session in enumerate(sessions):
        event_times = ut.get_event_times(session.time_stamps, session.event_codes, session.IDs)
        ITI_start_times = event_times['ITI_start']
        center_poke_times = sorted(np.hstack((event_times['high_poke'], event_times['low_poke'])))
        reaction_times = 1000 * _latencies(ITI_start_times,  center_poke_times)[1:-1]
        all_reaction_times.append(reaction_times)
        transitions = (session.blocks['trial_trans_state'] == session.CTSO['transitions'])[:len(reaction_times)] # Transitions common/rare.
        outcomes = session.CTSO['outcomes'][:len(reaction_times)].astype(bool)
        median_reaction_times[i, 0] = np.median(reaction_times[ transitions &  outcomes])  # Common transition, rewarded.
        median_reaction_times[i, 1] = np.median(reaction_times[~transitions &  outcomes])  # Rare transition, rewarded.
        median_reaction_times[i, 2] = np.median(reaction_times[ transitions & ~outcomes])  # Common transition, non-rewarded.
        median_reaction_times[i, 3] = np.median(reaction_times[~transitions & ~outcomes])  # Rare transition, non-rewarded.
    mean_RTs = np.mean(median_reaction_times,0)
    SEM_RTs  = np.sqrt(np.var(median_reaction_times,0)/len(sessions))
    p.figure(1)
    p.clf()
    p.title('First step reaction times')
    p.bar([1,2,3,4], mean_RTs, yerr = SEM_RTs)
    p.ylim(min(mean_RTs) * 0.8, max(mean_RTs) * 1.1)
    p.xticks([1.4, 2.4, 3.4, 4.4], ['Com. Rew.', 'Rare Rew.', 'Com. Non.', 'Rare. Non.'])
    p.xlim(0.8,5)
    p.ylabel('Reaction time (ms)')
    all_reaction_times = np.hstack(all_reaction_times)
    bin_edges = np.arange(0,3001)
    rt_hist = np.histogram(all_reaction_times, bin_edges)[0]
    cum_rt_hist = np.cumsum(rt_hist) / float(len(all_reaction_times))
    p.figure(2)
    p.clf()
    p.plot(bin_edges[:-1],cum_rt_hist)
    p.ylim(0,1)
    p.xlabel('Time from ITI start (ms)')
    p.ylabel('Cumumative fraction of first central pokes.')
开发者ID:dydcfg,项目名称:Two_Step,代码行数:35,代码来源:plotting.py

示例15: test_wald_sample

    def test_wald_sample(self):
        acc=ShiftedWaldAccumulator(.2, .2, 2.0)
        nsamples=100000
        x=np.linspace(0,10, nsamples)
        
        import pylab as pl
        samp=acc.sample(nsamples)
        #dens=scipy.stats.gaussian_kde(samp[samp<10])

        pl.hist(acc.sample(nsamples),200, normed=True)
        h,hx=np.histogram(samp, density=True, bins=1000)
        hx=hx[:-1]+(hx[1]-hx[0])/2.
        #assert np.all(np.abs(h-acc.pdf(hx))<1.5)

        # kolmogoroff smirnov tests whether samples come from CDF
        D,pv=scipy.stats.kstest(samp, acc.cdf)
        print D,pv
        assert pv>.05, "D=%f,p=%f"%(D,pv)
        if True:
            pl.clf()
            #pl.subplot(2,1,1)
            #pl.hist(samp[samp<10],300, normed=True, alpha=.3)


            #pl.subplot(2,1,2)
            pl.bar(hx, h, alpha=.3, width=hx[1]-hx[0])
            pl.plot(x,acc.pdf(x), color='red', label='analytical')
            #pl.plot(x,dens(x),    color='green', label='kde')
            pl.xlim(0,3)
            pl.legend()
            self.savefig()
开发者ID:snazzyservice,项目名称:pyrace,代码行数:31,代码来源:testWald.py


注:本文中的pylab.bar函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。