本文整理汇总了Python中pylab.axvline函数的典型用法代码示例。如果您正苦于以下问题:Python axvline函数的具体用法?Python axvline怎么用?Python axvline使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了axvline函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotAgainstGFP
def plotAgainstGFP(self, extradataA = [], extradataG = [], intensity = [], seq = []):
fig1 = pylab.figure(figsize = (25, 10))
print len(self.GFP)
for i in xrange(min(len(data.cat), 3)):
print len(self.GFP[self.categories == i])
vect = []
pylab.subplot(1,3,i+1)
#pylab.hist(self.GFP[self.categories == i], bins = 20, color = data.colors[i])
pop = self.GFP[self.categories == i]
pylab.plot(self.GFP[self.categories == i], self.angles[self.categories == i], data.colors[i]+'o', markersize = 8)#, label = data.cat[i])
print "cat", i, "n pop", len(self.GFP[(self.categories == i) & (self.GFP > -np.log(12.5))])
x = np.linspace(np.min(self.GFP[self.categories == i]), np.percentile(self.GFP[self.categories == i], 80),40)
#fig1.canvas.mpl_connect('pick_event', onpick)
for j in x:
vect.append(np.median(self.angles[(self.GFP > j) & (self.categories == i)]))
pylab.plot([-4.5, -0.5], [vect[0], vect[0]], data.colors[i], label = "mediane de la population entiere", linewidth = 5)
print vect[0], vect[np.argmax(x > -np.log(12.5))]
pylab.plot([-np.log(12.5), -0.5], [vect[np.argmax(x > -np.log(12.5))] for k in [0,1]], data.colors[i], label = "mediane de la population de droite", linewidth = 5, ls = '--')
pylab.axvline(x = -np.log(12.5), color = 'm', ls = '--', linewidth = 3)
pylab.xlim([-4.5, -0.5])
pylab.legend(loc = 2, prop = {'size':17})
pylab.title(data.cat[i].split(',')[0], fontsize = 24)
pylab.xlabel('score GFP', fontsize = 20)
pylab.ylabel('Angle (degre)', fontsize = 20)
pylab.tick_params(axis='both', which='major', labelsize=20)
pylab.ylim([-5, 105])
##pylab.xscale('log')
pylab.show()
示例2: plotDirections
def plotDirections(aabb=(),mask=0,bins=20,numHist=True,noShow=False,sphSph=False):
"""Plot 3 histograms for distribution of interaction directions, in yz,xz and xy planes and
(optional but default) histogram of number of interactions per body. If sphSph only sphere-sphere interactions are considered for the 3 directions histograms.
:returns: If *noShow* is ``False``, displays the figure and returns nothing. If *noShow*, the figure object is returned without being displayed (works the same way as :yref:`yade.plot.plot`).
"""
import pylab,math
from yade import utils
for axis in [0,1,2]:
d=utils.interactionAnglesHistogram(axis,mask=mask,bins=bins,aabb=aabb,sphSph=sphSph)
fc=[0,0,0]; fc[axis]=1.
subp=pylab.subplot(220+axis+1,polar=True);
# 1.1 makes small gaps between values (but the column is a bit decentered)
pylab.bar(d[0],d[1],width=math.pi/(1.1*bins),fc=fc,alpha=.7,label=['yz','xz','xy'][axis])
#pylab.title(['yz','xz','xy'][axis]+' plane')
pylab.text(.5,.25,['yz','xz','xy'][axis],horizontalalignment='center',verticalalignment='center',transform=subp.transAxes,fontsize='xx-large')
if numHist:
pylab.subplot(224,polar=False)
nums,counts=utils.bodyNumInteractionsHistogram(aabb if len(aabb)>0 else utils.aabbExtrema())
avg=sum([nums[i]*counts[i] for i in range(len(nums))])/(1.*sum(counts))
pylab.bar(nums,counts,fc=[1,1,0],alpha=.7,align='center')
pylab.xlabel('Interactions per body (avg. %g)'%avg)
pylab.axvline(x=avg,linewidth=3,color='r')
pylab.ylabel('Body count')
if noShow: return pylab.gcf()
else:
pylab.ion()
pylab.show()
示例3: imshow_box
def imshow_box(f,im, x,y,s):
'''imshow_box(f,im, x,y,s)
f: figure
im: image
x: center coordinate for box
y: center coord
s: box shape, (width, height)
'''
global coord
P.figure(f.number)
P.clf();
P.imshow(im);
P.axhline(y-s[1]/2.)
P.axhline(y+s[1]/2.)
P.axvline(x-s[0]/2.)
P.axvline(x+s[0]/2.)
xy=crop(m,s,y,x)
coord=(0.5*(xy[2]+xy[3]), 0.5*(xy[0]+xy[1]))
P.title(str('x: %d y: %d' % (x,y)));
P.figure(999);
P.imshow(master[xy[0]:xy[1],xy[2]:xy[3]])
P.title('Master');
P.figure(998);
df=(master[xy[0]:xy[1],xy[2]:xy[3]]-slave)
P.imshow(np.abs(df))
P.title(str('RMS: %0.6f' % np.sqrt((df**2.).mean()) ));
示例4: _show_rates
def _show_rates(rate, wo, wt, attenuator, tau_NP, tau_P):
import pylab
#pylab.figure()
pylab.errorbar(rate, wt[0], yerr=wt[1], fmt='g.', label='attenuated')
pylab.errorbar(rate, wo[0], yerr=wo[1], fmt='b.', label='unattenuated')
pylab.xscale('log')
pylab.yscale('log')
pylab.xlabel('incident rate (counts/second)')
pylab.ylabel('observed rate (counts/second)')
pylab.legend(loc='best')
pylab.grid(True)
pylab.plot(rate, rate/attenuator, 'g-', label='target')
pylab.plot(rate, rate, 'b-', label='target')
Ipeak, Rpeak = peak_rate(tau_NP=tau_NP, tau_P=tau_P)
if rate[0] <= Ipeak <= rate[-1]:
pylab.axvline(x=Ipeak, ls='--', c='b')
pylab.text(x=Ipeak, y=0.05, s=' %g'%Ipeak,
ha='left', va='bottom',
transform=pylab.gca().get_xaxis_transform())
if False:
pylab.axhline(y=Rpeak, ls='--', c='b')
pylab.text(y=Rpeak, x=0.05, s=' %g\n'%Rpeak,
ha='left', va='bottom',
transform=pylab.gca().get_yaxis_transform())
示例5: plotLDDecaySpaceTime2d
def plotLDDecaySpaceTime2d(ld0=1):
T=np.arange(0,1500+1,500)
L=1e6+1
pos=500000
r=2*1e-8
s=0.01;x0=0.005
# s=0.05;x0=1e-3
positions=np.arange(0,L,1000)
dist=abs(positions - pos)
def getColor(n):
color=['k','red','blue','g','m','c','coral']
return color[:n]
plt.figure(figsize=(25,12))
for t,color in zip(T,getColor(len(T))):
LD(t,ld0,s,x0,r,dist,positions).plot(ax=plt.gca(),linewidth=2, color=color,label='t={}'.format(t))
for t,color in zip(T,getColor(len(T))):
if not t :continue
pd.Series(ld0*np.exp(-r*t*(dist)),index=positions).plot(ax=plt.gca(),style='--',color=color,linewidth=2)
plt.legend(map(lambda x: 't={}'.format(x),T),loc='best');
plt.axvline(500000,color='k',linewidth=2)
plt.gca().axvspan(475000, 525000, alpha=0.25, color='black')
plt.grid();plt.ylim([-0.05,1.1]);plt.xlabel('Position');plt.ylabel('LD to Position 500K');plt.title('Space-Time Decay of LD under Neutral Evolution');
# plt.savefig(Simulation.paperFiguresPath+'LDDecay2d')
plt.show()
示例6: simFlips
def simFlips(numFlips, numTrials): # performs and displays the simulation result
diffs = [] # diffs to know if there was a fair Trial. It has the absolute differences of heads and tails in each trial
for i in xrange(0, numTrials):
heads, tails = flipTrial(numFlips)
diffs.append(abs(heads - tails))
diffs = pylab.array(diffs) # create an array of diffs
diffMean = sum(diffs)/len(diffs) # average of absolute differences of heads and tails from each trial
diffPercent = (diffs/float(numFlips)) * 100 # create an array of percentage of each diffs from its no. of flips.
percentMean = sum(diffPercent)/len(diffPercent) # create a percent mean of all diffPercents in the array
pylab.hist(diffs) # displays the distribution of elements in diffs array
pylab.axvline(diffMean, color = 'r', label = 'Mean')
pylab.legend()
titleString = str(numFlips) + ' Flips, ' + str(numTrials) + ' Trials'
pylab.title(titleString)
pylab.xlabel('Difference between heads and tails')
pylab.ylabel('Number of Trials')
pylab.figure()
pylab.plot(diffPercent)
pylab.axhline(percentMean, color = 'r', label = 'Mean')
pylab.legend()
pylab.title(titleString)
pylab.xlabel('Trial Number')
pylab.ylabel('Percent Difference between heads and tails')
示例7: esat_comparison_plot
def esat_comparison_plot(t=_np.linspace(173.15, 373.15, 20), std="Hyland_Wexler", percent=True, log=False):
import pylab
import brewer2mpl
methods = list(esat(0, method="return"))
methods.remove(std)
print len(methods)
pylab.rcParams.update({"axes.color_cycle": brewer2mpl.get_map("Paired", "qualitative", 12).mpl_colors})
y = esat(t, method=std, info=False)
i = 0
style = "-"
for im in methods:
if i > 11:
style = "--"
print im
if percent:
pylab.plot(t, 100.0 * (esat(t, method=im, info=False) - y) / y, lw=2, ls=style)
else:
pylab.plot(t, esat(t, method=im, info=False) - y, lw=2, ls=style)
i += 1
pylab.legend(methods, loc="upper right", fontsize=8)
pylab.xlabel("Temperature [K]")
if percent:
# pylab.semilogy()
pylab.ylabel("Water Vapor Pressure Difference [%]")
else:
pylab.ylabel("Water Vapor Pressure [Pa]")
pylab.title("Comparison of Water Vapor Calculations Ref:" + std)
pylab.xlim(_np.round(t[0]), _np.round(t[-1]))
pylab.grid()
pylab.axvline(x=273.15, color="k")
if log:
pylab.yscale("log")
示例8: Cross
def Cross(x0=0.0, y0=0.0, clr='black', ls='dashed', lw=1, zorder=0):
"""
Draw cross through zero
=======================
"""
axvline(x0, color=clr, linestyle=ls, linewidth=lw, zorder=zorder)
axhline(y0, color=clr, linestyle=ls, linewidth=lw, zorder=zorder)
示例9: test
def test():
if 0:
from pandas import DataFrame
X = np.linspace(0.01, 1.0, 10)
Y = np.log(X)
Y -= Y.min()
Y /= Y.max()
Y *= 0.95
df = DataFrame({'X': X, 'Y': Y})
P = Pareto(df, 'X', 'Y')
data = []
for val in np.linspace(0,1,15):
data.append(dict(val=val, x=P.lookup_x(val), y=P.lookup_y(val)))
pl.axvline(val, alpha=.5)
pl.axhline(val, alpha=.5)
dd = DataFrame(data)
pl.scatter(dd.y, dd.val, lw=0, c='r')
pl.scatter(dd.val, dd.x, lw=0, c='g')
print dd
#P.scatter(c='r', lw=0)
P.show_frontier(c='r', lw=4)
pl.show()
X,Y = np.random.normal(0,1,size=(2, 30))
for maxX in [0,1]:
for maxY in [0,1]:
pl.figure()
pl.title('max x: %s, max y: %s' % (maxX, maxY))
pl.scatter(X,Y,lw=0)
show_frontier(X, Y, maxX=maxX, maxY=maxY)
pl.show()
示例10: dofit
def dofit(xs, slambdas, alpha, sinbeta, gamma, delta, band, y):
xs = np.array(xs)
ok = np.isfinite(slambdas)
lsf = Fit.do_fit_wavelengths(xs[ok], lines[ok], alpha, sinbeta,
gamma, delta, band, y, error=slambdas[ok])
(order, pixel_y, alpha, sinbeta, gamma, delta) = lsf.params
print "order alpha sinbeta gamma delta"
print "%1.0i %5.7f %3.5f %3.2e %5.2f" % (order, alpha, sinbeta,
gamma, delta)
ll = Fit.wavelength_model(lsf.params, pix)
if DRAW:
pl.figure(3)
pl.clf()
pl.plot(ll, spec)
pl.title("Pixel %4.4f" % pos)
for lam in lines:
pl.axvline(lam, color='r')
pl.draw()
return [np.abs((
Fit.wavelength_model(lsf.params, xs[ok]) - lines[ok]))*1e4,
lsf.params]
示例11: test_band_unpolarized
def test_band_unpolarized(self):
"""polarizedのPROCAR用"""
# import seaborn
path = os.path.join(self.path, 'unpolarized', 'C_P63mmmc')
dos = collect_vasp.Doscar(os.path.join(path, 'DOSCAR_polarized'))
dos.get_data()
e_fermi = dos.fermi_energy # DOSCARからのEf
band = collect_vasp.Procar(os.path.join(path, 'PROCAR_band'),
is_polarized=False)
band['energy'] = band['energy'] - e_fermi
band.output_keys = ['kpoint_id', 'energy', "spin"]
kp_label = band.get_turning_kpoints_pmg(os.path.join(path, 'KPOINTS_band'))
# plot
plt = pylab.figure(figsize=(7, 7/1.618))
ax1 = plt.add_subplot(111)
ax1.set_ylabel("Energy from $E_F$(meV)")
ax1.set_xlabel("BZ direction")
# 枠
for i in kp_label[0]:
pylab.axvline(x=i, ls=':', color='gray')
pylab.axhline(y=0, ls=':', color='gray')
ax1.scatter(band['kpoint_id'], band['energy'], s=3, c='blue',
linewidths=0)
ax1.set_xlim(0, band['kpoint_id'][-1])
pylab.xticks(kp_label[0], kp_label[1])
pylab.show()
示例12: simpleExample
def simpleExample():
# Create a signal
N = 256
signal = numpy.zeros(N,numpy.complex128)
# Make our signal 1 in the middle, zero elsewhere
signal[N/2] = 1.0
# plot our signal
pylab.figure()
pylab.plot(abs(signal))
# Do the GFT on the signal
SIGNAL = gft.gft1d(signal,'gaussian')
# plot the magnitude of the signal
pylab.figure()
pylab.plot(abs(SIGNAL),'b')
# get the partitions
partitions = gft.partitions(N)
# for each partition, draw a line on the graph. Since the partitions only indicate the
# positive frequencies, we need to draw partitions on both sides of the DC
for i in partitions[0:len(partitions)/2]:
pylab.axvline((N/2+i),color='r',alpha=0.2)
pylab.axvline((N/2-i),color='r',alpha=0.2)
# finally, interpolate the GFT spectrum and plot a spectrogram
pylab.figure()
pylab.imshow(abs(gft.gft1dInterpolateNN(SIGNAL)))
示例13: demo_perfidious
def demo_perfidious(n):
plt.figure()
r = (np.arange(n)+1)/float(n+1)
bases = [(PowerBasis(), "Power"),
(ChebyshevBasis(interval=(1./(n+1),n/float(n+1))),"Chebyshev"),
(LagrangeBasis(interval=(1./(n+1),n/float(n+1))),"Lagrange"),
(LagrangeBasis(r),"Specialized Lagrange")]
xs = np.linspace(0,1,50*n)
for (i,(b,l)) in enumerate(bases):
p = b.from_roots(r)
plt.subplot(len(bases),1,i+1)
plt.semilogy(xs,np.abs(p(xs)),label=l)
plt.xlim(0,1)
plt.ylim(min=1)
for j in range(n):
plt.axvline((j+1)/float(n+1),linestyle=":",color="black")
plt.legend(loc="best")
print b.points
print p.coefficients
plt.subplot(len(bases),1,1)
plt.title('The "perfidious polynomial" for n=%d' % n)
示例14: measure_tae
def measure_tae():
print "Measuring initial perception of all orientations..."
before=test_all_orientations(0.0,0.0)
pylab.figure(figsize=(5,5))
vectorplot(degrees(before.keys()), degrees(before.keys()),style="--") # add a dashed reference line
vectorplot(degrees(before.values()),degrees(before.keys()),\
title="Initial perceived values for each orientation")
print "Adapting to pi/2 gaussian at the center of retina for 90 iterations..."
for p in ["LateralExcitatory","LateralInhibitory","LGNOnAfferent","LGNOffAfferent"]:
# Value is just an approximate match to bednar:nc00; not calculated directly
topo.sim["V1"].projections(p).learning_rate = 0.005
inputs = [pattern.Gaussian(x = 0.0, y = 0.0, orientation = pi/2.0,
size=0.088388, aspect_ratio=4.66667, scale=1.0)]
topo.sim['Retina'].input_generator.generators = inputs
topo.sim.run(90)
print "Measuring adapted perception of all orientations..."
after=test_all_orientations(0.0,0.0)
before_vals = array(before.values())
after_vals = array(after.values())
diff_vals = before_vals-after_vals # Sign flipped to match conventions
pylab.figure(figsize=(5,5))
pylab.axvline(90.0)
pylab.axhline(0.0)
vectorplot(wrap(-90.0,90.0,degrees(diff_vals)),degrees(before.keys()),\
title="Difference from initial perceived value for each orientation")
示例15: plot
def plot(kmv):
py.scatter([d / float(2 ** 32 - 1)
for d in kmv.data[:-1]], [0] * (len(kmv.data) - 1), alpha=0.25)
py.axvline(x=(kmv.data[-2] / float(2 ** 32 - 1)), c='r')
py.gca().get_yaxis().set_visible(False)
py.gca().get_xaxis().set_ticklabels([])
py.gca().get_xaxis().set_ticks([x / 10. for x in xrange(11)])