本文整理汇总了Python中pylab.array函数的典型用法代码示例。如果您正苦于以下问题:Python array函数的具体用法?Python array怎么用?Python array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了array函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fitData2
def fitData2(fileName):
'''
Models predictions using Terman's law model (cubic fit) and
Hooks Law (linear fit).
Hook's Law functions up to the point where the spring reaches
it's elastic limit - when it stops behaving as a spring but instead
as a rope, etc (doesn't get longer b/c hang more weight on it)
'''
xVals, yVals = getData(fileName)
extX = pylab.array(xVals + [1.05, 1.1, 1.15, 1.2, 1.25])
xVals = pylab.array(xVals)
yVals = pylab.array(yVals)
xVals = xVals*9.81 # convert mass to force (F = mg)
extX = extX*9.81 # convert mass to force (F = mg)
pylab.plot(xVals, yVals, 'bo', label = 'Measured displacements')
pylab.title('Measured Displacement of Spring')
pylab.xlabel('|Force| (Newtons)')
pylab.ylabel('Distance (meters)')
a,b = pylab.polyfit(xVals, yVals, 1)
estYVals = a*extX + b
pylab.plot(extX, estYVals, label = 'Linear fit')
a,b,c,d = pylab.polyfit(xVals, yVals, 3)
estYVals = a*(extX**3) + b*extX**2 + c*extX + d
pylab.plot(extX, estYVals, label = 'Cubic fit')
pylab.legend(loc = 'best')
示例2: getCloneReplicates
def getCloneReplicates(self, clone, source, condition, applyFilter=False):
'''Retrieve all growth curves for a clone+source+condition'''
# Check if any other replicates should be returned
# retArray is a 2xN multidimensional numpy array
retArray = py.array([])
first = True
for i in xrange(1, self.numReplicates[clone] + 1):
# Get replicate
filterMe = self.dataHash[clone][i][source][condition]['filter']
currCurve = self.dataHash[clone][i][source][condition]['od']
# Check if filter is enabled and curve should be filtered
if applyFilter and filterMe:
continue
# Create multidimensional array if first
elif first:
retArray = py.array([currCurve])
first = False
# Append to multidimensional array if not first
else:
retArray = py.concatenate((retArray,
py.array([currCurve])))
return retArray
示例3: t
def t(self, k, cosTheta, pk, c):
"""
Raw trispectrum
Not recently tested
"""
pk = c.pkInterp(k)
f2term = (
self.tf21(0, 1, 2, k, cosTheta, pk, c)
+ self.tf21(1, 2, 0, k, cosTheta, pk, c)
+ self.tf21(2, 0, 1, k, cosTheta, pk, c)
+ self.tf21(1, 2, 3, k, cosTheta, pk, c)
+ self.tf21(2, 3, 1, k, cosTheta, pk, c)
+ self.tf21(3, 1, 2, k, cosTheta, pk, c)
+ self.tf21(2, 3, 0, k, cosTheta, pk, c)
+ self.tf21(3, 0, 2, k, cosTheta, pk, c)
+ self.tf21(0, 2, 3, k, cosTheta, pk, c)
+ self.tf21(3, 0, 1, k, cosTheta, pk, c)
+ self.tf21(0, 1, 3, k, cosTheta, pk, c)
+ self.tf21(1, 3, 0, k, cosTheta, pk, c)
) * 4.0
f3term = (
self.tf31(M.array([0, 1, 2]), k, cosTheta, pk)
+ self.tf31(M.array([1, 2, 3]), k, cosTheta, pk)
+ self.tf31(M.array([2, 3, 1]), k, cosTheta, pk)
+ self.tf31(M.array([3, 1, 2]), k, cosTheta, pk)
) * 6.0
# print cosTheta,f2term, f3term, ft2term+f3term
return f2term + f3term
示例4: main
def main():
mu = pl.array([[0], [12], [24], [36]])
Sigma = pl.array([[3.01602775, 1.02746769, -3.60224613, -2.08792829],
[1.02746769, 5.65146472, -3.98616664, 0.48723704],
[-3.60224613, -3.98616664, 13.04508284, -1.59255406],
[-2.08792829, 0.48723704, -1.59255406, 8.28742469]])
# The data matrix is created for above mu and Sigma.
d, U = pl.eig(Sigma)
L = pl.diagflat(d)
A = pl.dot(U, pl.sqrt(L))
X = pl.randn(4, 1000)
# Y is the data matrix of random samples.
Y = pl.dot(A, X) + pl.tile(mu, 1000)
pl.figure(1)
pl.clf()
pl.plot(X[0], Y[1], '+', color='#0000FF', label='i=0,j=1')
pl.plot(X[0], Y[2], '+', color='#FF0000', label='i=0,j=2')
pl.plot(X[0], Y[3], '+', color='#00FF00', label='i=0,j=3')
pl.plot(X[1], Y[0], 'x', color='#FFFF00', label='i=1,j=0')
pl.plot(X[1], Y[2], 'x', color='#00FFFF', label='i=1,j=2')
pl.plot(X[1], Y[3], 'x', color='#444444', label='i=1,j=3')
pl.plot(X[2], Y[0], '.', color='#774411', label='i=2,j=0')
pl.plot(X[2], Y[1], '.', color='#222222', label='i=2,j=1')
pl.plot(X[2], Y[3], '.', color='#AAAAAA', label='i=2,j=3')
pl.plot(X[3], Y[0], '+', color='#FFAA22', label='i=3,j=0')
pl.plot(X[3], Y[1], '+', color='#22AAFF', label='i=3,j=1')
pl.plot(X[3], Y[2], '+', color='#FFDD00', label='i=3,j=2')
pl.legend()
pl.savefig('fig21.png')
示例5: fitData3
def fitData3(fileName):
# xVals is type 'numpy.ndarray'
# xVals[0] will return the 1st item in array
xVals, yVals = getData(fileName)
xVals = pylab.array(xVals[:-6])
yVals = pylab.array(yVals[:-6])
xVals = xVals*9.81 # convert mass to force (F = mg)
observed_data_variance = calcVariance(xVals)
# need to grab the Y values from somewhere ??? maybe estYVals
# to compare with observed data Y values
# to calculate the variance of errors
# errors_variance = calcVariance(xVals)
coefficient_determination = 0
pylab.plot(xVals, yVals, 'bo', label = 'Measured points')
pylab.title('Measured Displacement of Spring')
pylab.xlabel('Force (Newtons)')
pylab.ylabel('Distance (meters)')
a,b = pylab.polyfit(xVals, yVals, 1) # fix y = ax + b
# use line equation to graph predicted values
estYVals = a*xVals + b
k = 1/a
pylab.plot(xVals, estYVals, label = 'Linear fit, k = '
+ str(round(k, 5)))
pylab.legend(loc = 'best')
示例6: compare_models
def compare_models(db, stoch="itn coverage", stat_func=None, plot_type="", **kwargs):
if stat_func == None:
stat_func = lambda x: x
X = {}
for k in sorted(db.keys()):
c = k.split("_")[2]
X[c] = []
for k in sorted(db.keys()):
c = k.split("_")[2]
X[c].append([stat_func(x_ki) for x_ki in db[k].__getattribute__(stoch).gettrace()])
x = pl.array([pl.mean(xc[0]) for xc in X.values()])
xerr = pl.array([pl.std(xc[0]) for xc in X.values()])
y = pl.array([pl.mean(xc[1]) for xc in X.values()])
yerr = pl.array([pl.std(xc[1]) for xc in X.values()])
if plot_type == "scatter":
default_args = {"fmt": "o", "ms": 10}
default_args.update(kwargs)
for c in X.keys():
pl.text(pl.mean(X[c][0]), pl.mean(X[c][1]), " %s" % c, fontsize=8, alpha=0.4, zorder=-1)
pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
pl.xlabel("First Model")
pl.ylabel("Second Model")
pl.plot([0, 1], [0, 1], alpha=0.5, linestyle="--", color="k", linewidth=2)
elif plot_type == "rel_diff":
d1 = sorted(100 * (x - y) / x)
d2 = sorted(100 * (xerr - yerr) / xerr)
pl.subplot(2, 1, 1)
pl.title("Percent Model 2 deviates from Model 1")
pl.plot(d1, "o")
pl.xlabel("Countries sorted by deviation in mean")
pl.ylabel("deviation in mean (%)")
pl.subplot(2, 1, 2)
pl.plot(d2, "o")
pl.xlabel("Countries sorted by deviation in std err")
pl.ylabel("deviation in std err (%)")
elif plot_type == "abs_diff":
d1 = sorted(x - y)
d2 = sorted(xerr - yerr)
pl.subplot(2, 1, 1)
pl.title("Percent Model 2 deviates from Model 1")
pl.plot(d1, "o")
pl.xlabel("Countries sorted by deviation in mean")
pl.ylabel("deviation in mean")
pl.subplot(2, 1, 2)
pl.plot(d2, "o")
pl.xlabel("Countries sorted by deviation in std err")
pl.ylabel("deviation in std err")
else:
assert 0, "plot_type must be abs_diff, rel_diff, or scatter"
return pl.array([x, y, xerr, yerr])
示例7: read_doscar
def read_doscar(self, fname="DOSCAR"):
"""Read a VASP DOSCAR file."""
f = open(fname)
natoms = int(f.readline().split()[0])
[f.readline() for n in range(4)] # Skip next 4 lines.
dos = []
for na in xrange(natoms + 1):
try:
line = f.readline()
if line == "":
raise Exception
except Exception, e:
errstr = (
"Failed reading "
+ str(na)
+ ":th DOS block, probably "
+ "this DOSCAR is from some old version of VASP that "
+ "doesn't "
+ "first produce a block with integrated DOS. Inserting "
+ "empty 0:th block."
)
sys.stderr.write(errstr)
dos.insert(0, pl.zeros((ndos, dos[1].shape[1])))
continue
try:
ndos = int(line.split()[2])
except:
print "Error, line is: " + line + "ENDLINE"
line = f.readline().split()
cdos = pl.zeros((ndos, len(line)))
cdos[0] = pl.array(line)
for nd in xrange(1, ndos):
line = f.readline().split()
cdos[nd] = pl.array(line)
dos.append(cdos)
示例8: anim_update
def anim_update(i):
"""
i: frame num
"""
## equivalent time = (i/tot)*(runtime/fct)
t = (float(i)/float(tot_frames))*(anim_run_time/float(fct))
# lnx, lny = line.get_data()
# pos_x, pos_y = P.get_position(t)
# head.set_data([pos_x], [pos_y])
# lnx = pylab.array([k for k in lnx] + [pos_x])
# lny = pylab.array([k for k in lny] + [pos_y])
# line.set_data(lnx, lny)
for i in range(len(Projs)):
pos_x, pos_y = Projs[i].get_position(t)
p_heads[i].set_data([pos_x], [pos_y])
lnx, lny = p_lines[i].get_data()
lnx = pylab.array([k for k in lnx] + [pos_x])
lny = pylab.array([k for k in lny] + [pos_y])
p_lines[i].set_data(lnx, lny)
return p_lines + p_heads
示例9: rollingMeanScale
def rollingMeanScale(series, period, plotAxis=False):
svr_rbf = SVR(kernel='rbf', C=1e4, gamma=.01, epsilon=.01)
'''Fit Model to Data Series'''
tS= numpy.array([series.index]).T
y_rbf = svr_rbf.fit(tS, list(series))
'''Up-sample to get rid of bias'''
fFit = arange(series.index[0],series.index[-1]+.1,.25)
trend = y_rbf.predict(numpy.array([fFit]).T)
'''Take rolling mean over 1-day window'''
shift = int(round(period/.5))
rMean = pandas.rolling_mean(trend, shift*2)
rMean = numpy.roll(rMean, -shift)
rMean[:shift]=rMean[shift]
rMean[-(shift+1):]=rMean[-(shift+1)]
rMean = pandas.Series(rMean, index=fFit)
'''Adjust Data Series by subtracting out trend'''
series = series - array(rMean[array(series.index, dtype=float)])
series = scaleMe(series)-.5
if plotAxis:
plotAxis.plot(fFit, trend, label='Series Trend')
plotAxis.plot(fFit, rMean, label='Rolling Mean')
plotAxis.set_title('Detrend the Data')
plotAxis.legend(loc='lower left')
return series
示例10: main
def main():
f = open("final_position.txt","r")
data = pl.genfromtxt(f,comments = "L")
# need to get every other
x = pl.array([])
y = pl.array([])
for i,j in enumerate(data[:-7,2]):
if i%4 == 0:
x = pl.append(x,data[i,4])
y = pl.append(y,j)
print(x)
print(y)
fit = np.polyfit(x,y,2)
print(fit)
#fited = fit[0]+fit[1]*x + fit[2]*x**2
fited = np.poly1d(fit)
print(fited)
#pl.plot(pl.append(x,[.262,.264,.266]),fited(pl.append(x,[.262,.264,.266])),color="black")
pl.scatter(x,y,color = "black")
pl.xlabel("$A$",fontsize="30")
pl.ylabel("$x$",fontsize="30")
pl.savefig("fin_pts.png",transparent=True,dpi=300)
os.system("open fin_pts.png")
示例11: rotate_molecule
def rotate_molecule(coords, rotp = m.array((0.,0.,0.)), phi = 0., \
theta = 0., psi = 0.):
"""Rotate a molecule via Euler angles.
See http://mathworld.wolfram.com/EulerAngles.html for definition.
Input arguments:
coords: Atom coordinates, as Nx3 2d pylab array.
rotp: The point to rotate about, as a 1d 3-element pylab array
phi: The 1st rotation angle around z axis.
theta: Rotation around x axis.
psi: 2nd rotation around z axis.
"""
# First move the molecule to the origin
# In contrast to MATLAB, numpy broadcasts the smaller array to the larger
# row-wise, so there is no need to play with the Kronecker product.
rcoords = coords - rotp
# First Euler rotation about z in matrix form
D = m.array(((m.cos(phi), m.sin(phi), 0.), (-m.sin(phi), m.cos(phi), 0.), \
(0., 0., 1.)))
# Second Euler rotation about x:
C = m.array(((1., 0., 0.), (0., m.cos(theta), m.sin(theta)), \
(0., -m.sin(theta), m.cos(theta))))
# Third Euler rotation, 2nd rotation about z:
B = m.array(((m.cos(psi), m.sin(psi), 0.), (-m.sin(psi), m.cos(psi), 0.), \
(0., 0., 1.)))
# Total Euler rotation
A = m.dot(B, m.dot(C, D))
# Do the rotation
rcoords = m.dot(A, m.transpose(rcoords))
# Move back to the rotation point
return m.transpose(rcoords) + rotp
示例12: fitData
def fitData(fileName):
'''
Using Pylab's polyfit to find equations of the line to best fit the data from Hooks Law
experiment.
Hooks Law represented with equation - y = ax + b
y - Measured distance
x - Force
'''
xVals, yVals = getData(fileName)
xVals = pylab.array(xVals)
yVals = pylab.array(yVals)
xVals = xVals*9.81 # convert mass to force (F = mg)
pylab.plot(xVals, yVals, 'bo', label = 'Measured points')
pylab.title('Measured Displacement of Spring')
pylab.xlabel('Force (Newtons)')
pylab.ylabel('Distance (meters)')
a,b = pylab.polyfit(xVals, yVals, 1) # fit y = ax + b
# use line equation to graph predicted values
estYVals = a*xVals + b
k = 1/a
pylab.plot(xVals, estYVals, label = 'Linear fit, k = '
+ str(round(k, 5)))
pylab.legend(loc = 'best')
示例13: tryFits1
def tryFits1(fName):
'''
Calculate the coefficient of determination (R**2) to determine how
well the model fits the data and ergo could make predictions.
'''
distances, heights = getTrajectoryData(fName)
distances = pylab.array(distances)*36
totHeights = pylab.array([0]*len(distances))
for h in heights:
totHeights = totHeights + pylab.array(h)
pylab.title('Trajectory of Projectile (Mean of 4 Trials)')
pylab.xlabel('Inches from Launch Point')
pylab.ylabel('Inches Above Launch Point')
meanHeights = totHeights/float(len(heights))
pylab.plot(distances, meanHeights, 'bo')
a,b = pylab.polyfit(distances, meanHeights, 1)
altitudes = a*distances + b
pylab.plot(distances, altitudes, 'r',
label = 'Linear Fit' + ', R2 = '
+ str(round(rSquare(meanHeights, altitudes), 4)))
a,b,c = pylab.polyfit(distances, meanHeights, 2)
altitudes = a*(distances**2) + b*distances + c
pylab.plot(distances, altitudes, 'g',
label = 'Quadratic Fit' + ', R2 = '
+ str(round(rSquare(meanHeights, altitudes), 4)))
pylab.legend()
示例14: tryFits
def tryFits(fName):
'''
Linear fit does not fit the data. Not a logical assumption that the arrow
flies in a straight line to the target.
Quadratic fit mirrors a parabolic pathway.
'''
distances, heights = getTrajectoryData(fName)
distances = pylab.array(distances)*36 # Convert yards to feet
totHeights = pylab.array([0]*len(distances))
for h in heights:
totHeights = totHeights + pylab.array(h) # Get one avg measurement of height
pylab.title('Trajectory of Projectile (Mean of 4 Trials)')
pylab.xlabel('Inches from Launch Point')
pylab.ylabel('Inches Above Launch Point')
meanHeights = totHeights/float(len(heights))
pylab.plot(distances, meanHeights, 'bo')
a,b = pylab.polyfit(distances, meanHeights, 1)
altitudes = a*distances + b
pylab.plot(distances, altitudes, 'r',
label = 'Linear Fit')
a,b,c = pylab.polyfit(distances, meanHeights, 2)
altitudes = a*(distances**2) + b*distances + c
pylab.plot(distances, altitudes, 'g',
label = 'Quadratic Fit')
pylab.legend()
示例15: normal
def normal(name, pi, sigma, p, s):
""" Generate PyMC objects for a normal model
:Parameters:
- `name` : str
- `pi` : pymc.Node, expected values of rates
- `sigma` : pymc.Node, dispersion parameters of rates
- `p` : array, observed values of rates
- `s` : array, standard error of rates
:Results:
- Returns dict of PyMC objects, including 'p_obs' and 'p_pred' the observed stochastic likelihood and data predicted stochastic
"""
p = pl.array(p)
s = pl.array(s)
assert pl.all(s >= 0), "standard error must be non-negative"
i_inf = pl.isinf(s)
@mc.observed(name="p_obs_%s" % name)
def p_obs(value=p, pi=pi, sigma=sigma, s=s):
return mc.normal_like(value, pi, 1.0 / (sigma ** 2.0 + s ** 2.0))
s_noninf = s.copy()
s_noninf[i_inf] = 0.0
@mc.deterministic(name="p_pred_%s" % name)
def p_pred(pi=pi, sigma=sigma, s=s_noninf):
return mc.rnormal(pi, 1.0 / (sigma ** 2.0 + s ** 2.0))
return dict(p_obs=p_obs, p_pred=p_pred)