本文整理汇总了Python中pylab.arange函数的典型用法代码示例。如果您正苦于以下问题:Python arange函数的具体用法?Python arange怎么用?Python arange使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了arange函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: InvokeMap
def InvokeMap(coastfile='/media/sda4/map-data/aust-coast-noaa-2000000-1.dat',
lllon=80,
urlon=166,
lllat=-47,
urlat=-9,
draw_map=True):
global PYLIB_PATH
map = Basemap(projection='cyl',
llcrnrlon=lllon,
urcrnrlon=urlon,
llcrnrlat=lllat,
urcrnrlat=urlat,
#lat_ts=-35,
lat_0=-35,
lon_0=120,
resolution='l',
area_thresh=1000.)
try:
coast = p.load(coastfile)
coast = p.load(coastfile)
coast_x,coast_y = map(coast[:,0],coast[:,1])
p.plot(coast_x,coast_y,color='black')
except IOError:
map.drawcoastlines()
map.drawmapboundary()
map.drawmeridians(p.arange(0,360,10),labels=[0,0,1,0])
map.drawparallels(p.arange(-90,0,10),labels=[1,0,0,0])
return map
示例2: fBM_nd
def fBM_nd(dims, H, return_mat = False, use_eig_ev = True):
"""
creates fractional Brownian motion
parameters: dims is a tuple of the shape of the sample path (nxd);
H: Hurst exponent
this is the slow version of fBM. It might, however, be more precise than
fBM, however - sometimes, the matrix square root has a problem, which might
induce inaccuracy
use_eig_ev: use eigenvalue decomposition for matrix square root computation
(faster)
"""
n = dims[0]
d = dims[1]
Gamma = zeros((n,n))
print ('building ...\n')
for t in arange(n):
for s in arange(n):
Gamma[t,s] = .5*((s+1)**(2.*H) + (t+1)**(2.*H) - abs(t-s)**(2.*H))
print('rooting ...\n')
if use_eig_ev:
ev,ew = eig(Gamma.real)
Sigma = dot(ew, dot(diag(sqrt(ev)),ew.T) )
else:
Sigma = sqrtm(Gamma)
if return_mat:
return Sigma
v = randn(n,d)
return dot(Sigma,v)
示例3: plot
def plot(self,title='',include_baseline=False,equal_aspect=True):
""" Method that generates a plot of the ROC curve
Parameters:
title: Title of the chart
include_baseline: Add the baseline plot line if it's True
equal_aspect: Aspects to be equal for all plot
"""
pylab.clf()
pylab.plot([x[0] for x in self.derived_points], [y[1] for y in self.derived_points], self.linestyle)
if include_baseline:
pylab.plot([0.0,1.0], [0.0,1.0],'k-.')
pylab.ylim((0,1))
pylab.xlim((0,1))
pylab.xticks(pylab.arange(0,1.1,.1))
pylab.yticks(pylab.arange(0,1.1,.1))
pylab.grid(True)
if equal_aspect:
cax = pylab.gca()
cax.set_aspect('equal')
pylab.xlabel('1 - Specificity')
pylab.ylabel('Sensitivity')
pylab.title(title)
pylab.show()
示例4: visualize_labeled_z
def visualize_labeled_z():
x_batch, label_batch = sample_x_and_label_from_data_distribution(len(dataset), sequential=True)
z_batch = gen(x_batch, test=True)
z_batch = z_batch.data
# if z_batch[0].shape[0] != 2:
# raise Exception("Latent code vector dimension must be 2.")
fig = pylab.gcf()
fig.set_size_inches(20.0, 16.0)
pylab.clf()
colors = ["#2103c8", "#0e960e", "#e40402","#05aaa8","#ac02ab","#aba808","#151515","#94a169", "#bec9cd", "#6a6551"]
for n in xrange(z_batch.shape[0]):
result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[label_batch[n]], s=40, marker="o", edgecolors='none')
classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
recs = []
for i in range(0, len(colors)):
recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))
ax = pylab.subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
pylab.xticks(pylab.arange(-4, 5))
pylab.yticks(pylab.arange(-4, 5))
pylab.xlabel("z1")
pylab.ylabel("z2")
pylab.savefig("%s/labeled_z.png" % args.visualization_dir)
示例5: makecoords
def makecoords(expr, BL,UR,gridspacing=.1):
from pylab import arange, array
X=arange(BL[0],UR[0],gridspacing)
Y=arange(BL[1],UR[1],gridspacing)
fn=deriv(expr)
Z=array([[fn(x=x,y=y) for x in X] for y in Y])
return X,Y,Z
示例6: _pvoc2
def _pvoc2(self, X_hat, Phi_hat=None, R=None):
"""
::
alternate (batch) implementation of phase vocoder - time-stretch
inputs:
X_hat - estimate of signal magnitude
[Phi_hat] - estimate of signal phase
[R] - resynthesis hop ratio
output:
updates self.X_hat with modified complex spectrum
"""
N, W, H = self.nfft, self.wfft, self.nhop
R = 1.0 if R is None else R
dphi = P.atleast_2d((2*P.pi * H * P.arange(N/2+1)) / N).T
print "Phase Vocoder Resynthesis...", N, W, H, R
A = P.angle(self.STFT) if Phi_hat is None else Phi_hat
U = P.diff(A,1) - dphi
U = U - P.np.round(U/(2*P.pi))*2*P.pi
t = P.arange(0,n_cols,R)
tf = t - P.floor(t)
phs = P.c_[A[:,0], U]
phs += U[:,idx[1]] + dphi # Problem, what is idx ?
Xh = (1-tf)*Xh[:-1] + tf*Xh[1:]
Xh *= P.exp( 1j * phs)
self.X_hat = Xh
示例7: redshift
def redshift():
"""
Evolution with redshift of matter power spectrum
"""
zs = M.arange(0.,5.,2.)
for z in zs:
print z
c = pt.Camb(hubble = 70., ombh2 = 0.05*(0.7)**2, omch2 = 0.25*(0.7)**2,transfer_redshift = [z])
c.run()
ps = pt.PowerSpectrum(c.cp)
c.kextend(-10,60) #To ensure accurate sigma(r) -- if it doesn't, a warning will ensue
pt.normalizePk(c,0.8*ps.d1(z)/ps.d1(0.)) #sigma_8 at redshift z
#Sheth-Tormen
h = halo.HaloModel(c,st_big_a = 0., st_little_a=0.707, stq = 0.3, k = 10**M.arange(-2,2.01,0.2),massdivsperdex=5)
h.pmm = halo.getHaloPknl(c,h)
M.loglog(h.k, h.pmm, label='z='+str(z))
M.loglog(h.k, h.pk,'k:',label='linear')
cp_halofit = c.cp
cp_halofit['do_nonlinear'] = 1 # Halofit (Smith et al) fit
chalofit = pt.Camb(cambParam=cp_halofit)
chalofit.run()
wheretoplot = N.where(chalofit.k > 1e-2)[0]
M.loglog(chalofit.k[wheretoplot[::10]],chalofit.pk[wheretoplot[::10]],'--',label='halofit')
M.legend()
M.show()
示例8: adjuster
def adjuster(file_name, threshold=0.9):
record = collections.OrderedDict()
total = 0
for data in open(file_name).readlines():
curr = data.strip().split('\t')
record[curr[0]] = int(curr[1])
total += int(curr[1])
curr_count = 0
curr_list = list()
ratio_list = list()
for item in record.items():
curr_count += item[1]
curr_list.append(item[0])
ratio_list.append(curr_count / float(total))
if curr_count / float(total) >= threshold:
break
x = pylab.arange(1, len(ratio_list) + 1, 1)
plt.plot(x, ratio_list)
plt.show()
dx = 1
dy = diff(ratio_list) / dx
print len(dy)
print len(x)
x = pylab.arange(1, len(ratio_list), 1)
plt.plot(x, dy)
plt.show()
print dy
return curr_list
示例9: bars
def bars(data, figname, fig = None):
if fig == None:
P.ioff()
fig = P.figure()
ax = fig.add_subplot(111)
save = True
else:
ax = fig
fig = ax.get_figure()
save = False
ind = P.arange(len(data[0][0])) # the x locations for the groups
width = 0.20 # the width of the bars
#colors = ['r','b','g','y']
bar_groups = [ ax.bar( ind+width*i, grp[0], width,color=colors[i],\
yerr=grp[1], ecolor='k')\
for i,grp in enumerate(data)]
barsLegend = tuple([grp[0] for grp in bar_groups])
etiquetas = [str(i) for i in ctoa_list]
P.legend( barsLegend, ctoa_list, shadow=True)
#ax.set_title('Incremento de RT frente a CTD en distintos CTOAS', font, fontsize=12)
#ax.set_xlabel('CTD distance (cm)', font)
#ax.set_ylabel('RT increment (ms)', font)
ax.set_xticks(ind+width)
ax.set_xticklabels( ctd_names[:-1] )
ax.set_yticks(P.arange(-50,50,5))
ax.xaxis.set_ticks_position("bottom")
ax.yaxis.set_ticks_position("left")
ax.set_xlim(-width,len(ind))
ax.set_ylim(-60,60)
if save == True:
fig.savefig(figname+'bar'+graphext,dpi=dpi)
P.close(fig)
示例10: test_expert_model_level_value
def test_expert_model_level_value():
d = data.ModelData()
ages=pl.arange(101)
# create model with no priors
vars = {}
vars.update(age_pattern.age_pattern('test', ages, knots=pl.arange(0,101,5), smoothing=.01))
vars.update(expert_prior_model.level_constraints('test', {}, vars['mu_age'], ages))
# fit model
m = mc.MCMC(vars)
m.sample(3)
# create model with expert priors
parameters = {}
parameters['level_value'] = dict(value=.1, age_below=15, age_above=95)
parameters['level_bound'] = dict(upper=.01, lower=.001)
vars = {}
vars.update(age_pattern.age_pattern('test', ages, knots=pl.arange(0,101,5), smoothing=.01))
vars.update(expert_prior_model.level_constraints('test', parameters, vars['mu_age'], ages))
# fit model
m = mc.MCMC(vars)
m.sample(3)
示例11: drawROC
def drawROC(points,zeTitle,zeFilename,visible,show_fig,save_fig=True,
special_point=None,special_value=None,special_label=None):
AUC=computeAUC(points)
import pylab
pylab.clf()
pylab.grid(color='#aaaaaa', linestyle='-', linewidth=1,alpha=0.5)
pylab.plot([x[0] for x in points], [y[1] for y in points], '-', linewidth=3,color="#000088",zorder=3)
pylab.fill_between([x[0] for x in points], [y[1] for y in points],0,color='0.9')
pylab.plot([0.0,1.0], [0.0, 1.0], '-',color="#AAAAAA")
pylab.ylim((-0.01,1.01))
pylab.xlim((-0.01,1.01))
pylab.xticks(pylab.arange(0,1.1,.1))
pylab.yticks(pylab.arange(0,1.1,.1))
pylab.grid(True)
ax=pylab.gca()
r = pylab.Rectangle((0,0), 1, 1, edgecolor='#444444', facecolor='none',zorder=1)
ax.add_patch(r)
[spine.set_visible(False) for spine in ax.spines.values()]
if len(points)<10:
for i in range(1,len(points)-1):
pylab.plot(points[i][0],points[i][1],'o',color="#000066",zorder=6)
pylab.xlabel('False positive rate')
pylab.ylabel('True positive rate')
if special_point is not None:
pylab.plot(special_point[0],special_point[1],'o',color="#DD9999",zorder=6)
if special_value is not None:
pylab.text(special_point[0]+0.01,special_point[1]-0.01, special_value,
{'color' : '#DD5555', 'fontsize' : 10},
horizontalalignment = 'left',
verticalalignment = 'top',
rotation = 0,
clip_on = False)
if special_label is not None:
if special_label!="":
labels=[special_label]
colors=['#DD9999']
circles=[pylab.Circle((0, 0), 1, fc=colors[0])]
legend_location = 'lower right'
pylab.legend(circles, labels, loc=legend_location)
pylab.text(0.5, 0.3,'AUC=%f'%AUC,
horizontalalignment='center',
verticalalignment='center',
fontsize=18)
pylab.title(zeTitle)
if save_fig:
pylab.savefig(zeFilename,dpi=300)
print("\n result in "+zeFilename)
if show_fig:
pylab.show()
示例12: plotcp
def plotcp(nelem, chord, thick, u):
# Geometry
xnode = geomwing(nelem, chord, thick)
TEat1 = 1
dt = 1.0
# Boundary conditions
chisrf = bcondvel(xnode, u)
# Integral equation solution
B, C = srfmatbc(xnode)
phisrf = solvephi(B, C, chisrf)
cpoint = collocation(xnode)
# Pressure figure
spl = subplot(111)
spl.set_aspect("equal", "box")
plotgeom(xnode)
# Pressure calculation and plotting
U = u.reshape((1, 2))
cp = calccp(xnode, TEat1, dt, U, phisrf, chisrf)
cl = calchalfcl(xnode, TEat1, dt, U, phisrf, chisrf)
print cl
plot(cpoint[: nelem / 2 + 1, 0], cp[: nelem / 2 + 1, 0])
title(r"Stationary pressure coefficient, $c_L = %9.3f$" % cl[0])
ylabel(r"$c_p$", size=18)
xlabel(r"$x/c$", size=18)
xticks(arange(-0.2, 1.3, 0.2))
yticks(arange(-0.8, 1.3, 0.2))
示例13: multi_plot_search_on_eval_metrics
def multi_plot_search_on_eval_metrics(roc_search_em, score_thresholds, labels, metrics, line_styles, query_id='Query'):
import pylab
pylab.clf()
pylab.xlim((0, 1))
pylab.xticks(pylab.arange(0,1.1,.1))
pylab.ylim((-0.5, 1))
pylab.yticks(pylab.arange(0,1.1,.1))
pylab.grid(True)
pylab.xlabel('Score Thresholds')
for iix, score_key in enumerate(metrics):
for ix, eval_dict in enumerate(roc_search_em):
pylab.plot(score_thresholds, eval_dict[score_key],
linewidth=2, label=labels[ix] + '(%s)' % score_key,
color=METRIC_COLORS[ix], linestyle=line_styles[iix])
pylab.ylabel(' '.join(METRICS_DICT[score_key] for score_key in metrics))
pylab.title(' '.join(METRICS_DICT[score_key] for score_key in metrics))
if labels: pylab.legend(loc='lower left', prop={'size':9})
eval_file_name = '%s_%s.png' % (query_id, '_'.join(METRICS_DICT[score_key] for score_key in metrics))
pylab.savefig(eval_file_name, dpi=300, bbox_inches='tight', pad_inches=0.1)
print 'Saved figure: ', eval_file_name
print '----------------------------------------------------------------------------------'
示例14: fresnelConvolutionTransform
def fresnelConvolutionTransform(self,d) :
# make intensity distribution
i2 = Intensity2D(self.nx,self.startx,self.endx,
self.ny,self.starty,self.endy,
self.wl)
# FT on inital distribution
u1ft = pl.fft2(self.i)
# 2d convolution kernel
k = 2*pl.pi/i2.wl
# make spatial frequency matrix
maxsfx = 2*pl.pi/self.dx
maxsfy = 2*pl.pi/self.dy
dsfx = 2*maxsfx/(self.nx)
dsfy = 2*maxsfy/(self.ny)
self.sfx = pl.arange(-maxsfx/2,maxsfx/2+1e-15,dsfx/2)
self.sfy = pl.arange(-maxsfy/2,maxsfy/2+1e-15,dsfy/2)
[self.sfxgrid, self.sfygrid] = pl.fftshift(pl.meshgrid(self.sfx,self.sfy))
# make convolution kernel
kern = pl.exp(1j*d*(self.sfxgrid**2+self.sfygrid**2)/(2*k))
# apply convolution kernel and invert
i2.i = pl.ifft2(kern*u1ft)
return i2
示例15: _make_log_freq_map
def _make_log_freq_map(self):
"""
::
For the given ncoef (bands-per-octave) and nfft, calculate the center frequencies
and bandwidths of linear and log-scaled frequency axes for a constant-Q transform.
"""
fp = self.feature_params
bpo = float(self.nbpo) # Bands per octave
self._fftN = float(self.nfft)
hi_edge = float( self.hi )
lo_edge = float( self.lo )
f_ratio = 2.0**( 1.0 / bpo ) # Constant-Q bandwidth
self._cqtN = float( P.floor(P.log(hi_edge/lo_edge)/P.log(f_ratio)) )
self._dctN = self._cqtN
self._outN = float(self.nfft/2+1)
if self._cqtN<1: print "warning: cqtN not positive definite"
mxnorm = P.empty(self._cqtN) # Normalization coefficients
fftfrqs = self._fftfrqs #P.array([i * self.sample_rate / float(self._fftN) for i in P.arange(self._outN)])
logfrqs=P.array([lo_edge * P.exp(P.log(2.0)*i/bpo) for i in P.arange(self._cqtN)])
logfbws=P.array([max(logfrqs[i] * (f_ratio - 1.0), self.sample_rate / float(self._fftN))
for i in P.arange(self._cqtN)])
#self._fftfrqs = fftfrqs
self._logfrqs = logfrqs
self._logfbws = logfbws
self._make_cqt()