本文整理汇总了Python中pylab.absolute函数的典型用法代码示例。如果您正苦于以下问题:Python absolute函数的具体用法?Python absolute怎么用?Python absolute使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了absolute函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_thresholds
def plot_thresholds(rawdata, scan_values, plane='horizontal',
xlabel='turns', ylabel='intensity [particles]', zlabel='normalized emittance',
xlimits=((0.,8192)), ylimits=((0.,7.1e11)), zlimits=((0., 10.))):
# Prepare input data.
# x axis
t = rawdata[0,:,:]
turns = plt.ones(t.shape).T * plt.arange(len(t))
turns = turns.T
# z axis
epsn_abs = {}
epsn_abs['horizontal'] = plt.absolute(rawdata[11,:,:])
epsn_abs['vertical'] = plt.absolute(rawdata[12,:,:])
# Prepare plot environment.
ax11, ax13 = _create_axes(xlabel, ylabel, zlabel, xlimits, ylimits, zlimits)
cmap = plt.cm.get_cmap('jet', 2)
ax11.patch.set_facecolor(cmap(range(2))[-1])
cmap = plt.cm.get_cmap('jet')
x, y = plt.meshgrid(turns[:,0], scan_values)
z = epsn_abs[plane]
threshold_plot = ax11.contourf(x, y, z.T, levels=plt.linspace(zlimits[0], zlimits[1], 201),
vmin=zlimits[0], vmax=zlimits[1], cmap=cmap)
cb = plt.colorbar(threshold_plot, ax13, orientation='vertical')
cb.set_label(zlabel)
plt.tight_layout()
示例2: add_to_results
def add_to_results(model, name):
df = getattr(model, name)
model.results['param'].append(name)
model.results['bias'].append(df['abs_err'].mean())
model.results['mae'].append((pl.median(pl.absolute(df['abs_err'].dropna()))))
model.results['mare'].append(pl.median(pl.absolute(df['rel_err'].dropna())))
model.results['pc'].append(df['covered?'].mean())
示例3: scalar_validation_statistics
def scalar_validation_statistics(results, groups):
""" plot absolute z transformation of p_theta values,
grouped by dictionary groups
Parameters
----------
results : pandas.DataFrame with row called 'z'
groups : list of lists of columns of results
"""
pl.figure()
width = max(pl.absolute(results.ix['z']))
for row, (g_name, g) in enumerate(reversed(groups)):
z = pl.absolute(results.ix['z', g].__array__())
pl.plot([pl.mean(z)], [row], 'o', color='k', mec='k', mew=1)
pl.plot(z, [row]*len(z), 'o', color='none', mec='k', mew=1)
msg = 'p: %s' % ', '.join(['%.3f'%p for p in sorted(results.ix['p', g]*len(g))])
#msg += 'MAE: %s' % str(
pl.text(1.1*width, row, msg, va='center', fontsize='small')
pl.yticks(range(len(groups)), ['%s %d' % (g_name, len(g)) for (g_name, g) in reversed(groups)], fontsize='large')
pl.axis([-.05*width, width*1.05, -.5, len(groups)-.5])
pl.xlabel(r'Absolute $z$-score of $p_\theta$ values', fontsize='large')
pl.subplots_adjust(right=.5)
示例4: rank_by_distance_bhatt
def rank_by_distance_bhatt(self, qkeys, ikeys, rkeys, dists):
"""
::
Reduce timbre-channel distances to ranks list by ground-truth key indices
Bhattacharyya distance on timbre-channel probabilities and Kullback distances
"""
# timbre-channel search using pre-computed distances
ranks_list = []
t_keys, t_lens = self.get_adb_lists(0)
rdists=pylab.ones(len(t_keys))*float('inf')
qk = self._get_probs_tc(qkeys)
for i in range(len(ikeys[0])): # number of include keys
ikey=[]
dk = pylab.zeros(self.timbre_channels)
for t_chan in range(self.timbre_channels): # timbre channels
ikey.append(ikeys[t_chan][i])
try:
# find dist of key i for query
i_idx = rkeys[t_chan].index( ikey[t_chan] ) # dataset include-key match
# the reduced distance function in include_keys order
# distance is Bhattacharyya distance on probs and dists
dk[t_chan] = dists[t_chan][i_idx]
except:
print "Key not found in result list: ", ikey, "for query:", qkeys[t_chan]
raise error.BregmanError()
rk = self._get_probs_tc(ikey)
a_idx = t_keys.index( ikey[0] ) # audiodb include-key index
rdists[a_idx] = distance.bhatt(pylab.sqrt(pylab.absolute(dk)), pylab.sqrt(pylab.absolute(qk*rk)))
#search for the index of the relevant keys
rdists = pylab.absolute(rdists)
sort_idx = pylab.argsort(rdists) # Sort fields into database order
for r in self.ground_truth: # relevant keys
ranks_list.append(pylab.where(sort_idx==r)[0][0]) # Rank of the relevant key
return ranks_list, rdists
示例5: update_design
def update_design(self):
ax = self.ax
ax.cla()
ax2 = self.ax2
ax2.cla()
wp = self.wp
ws = self.ws
gpass = self.gpass
gstop = self.gstop
b, a = ss.iirdesign(wp, ws, gpass, gstop, ftype=self.ftype, output='ba')
self.a = a
self.b = b
#b = [1,2]; a = [1,2]
#Print this on command line so we can use it in our programs
print 'b = ', pylab.array_repr(b)
print 'a = ', pylab.array_repr(a)
my_w = pylab.logspace(pylab.log10(.1*self.ws[0]), 0.0, num=512)
#import pdb;pdb.set_trace()
w, h = freqz(b, a, worN=my_w*pylab.pi)
gp = 10**(-gpass/20.)#Go from db to regular
gs = 10**(-gstop/20.)
self.design_line, = ax.plot([.1*self.ws[0], self.ws[0], wp[0], wp[1], ws[1], 1.0], [gs, gs, gp, gp, gs, gs], 'ko:', lw=2, picker=5)
ax.semilogx(w/pylab.pi, pylab.absolute(h),lw=2)
ax.text(.5,1.0, '{:d}/{:d}'.format(len(b), len(a)))
pylab.setp(ax, 'xlim', [.1*self.ws[0], 1.2], 'ylim', [-.1, max(1.1,1.1*pylab.absolute(h).max())], 'xticklabels', [])
ax2.semilogx(w/pylab.pi, pylab.unwrap(pylab.angle(h)),lw=2)
pylab.setp(ax2, 'xlim', [.1*self.ws[0], 1.2])
ax2.set_xlabel('Normalized frequency')
pylab.draw()
示例6: fwhm
def fwhm(x, y):
hm = pl.amax(y/2.0);
y_diff = pl.absolute(y-hm);
y_diff_sorted = pl.sort(y_diff);
i1 = pl.where(y_diff==y_diff_sorted[0]);
i2 = pl.where(y_diff==y_diff_sorted[1]);
fwhm = pl.absolute(x[i1]-x[i2]);
return hm, fwhm
示例7: fresnelSingleTransformVW
def fresnelSingleTransformVW(self,d) :
# compute new window
x2 = self.nx*pl.absolute(d)*self.wl/(self.endx-self.startx)
y2 = self.ny*pl.absolute(d)*self.wl/(self.endy-self.starty)
# create new intensity object
i2 = Intensity2D(self.nx,-x2/2,x2/2,
self.ny,-y2/2,y2/2,
self.wl)
# compute intensity
u1p = self.i*pl.exp(-1j*pl.pi/(d*self.wl)*(self.xgrid**2+self.ygrid**2))
ftu1p = pl.fftshift(pl.fft2(pl.fftshift(u1p)))
i2.i = ftu1p*1j/(d*i2.wl)*pl.exp(-1j*pl.pi/(d*i2.wl)*(i2.xgrid**2+i2.ygrid**2))
return i2
示例8: fwhm_2gauss
def fwhm_2gauss(x, y, dx=0.001):
'''
Finds the FWHM for the profile y(x), with accuracy dx=0.001
Uses a 2-Gauss 1D fit.
'''
popt, pcov = curve_fit(gauss2, x, y);
xx = pl.arange(pl.amin(x), pl.amax(x)+dx, dx);
ym = gauss2(xx, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5])
hm = pl.amax(ym/2.0);
y_diff = pl.absolute(ym-hm);
y_diff_sorted = pl.sort(y_diff);
i1 = pl.where(y_diff==y_diff_sorted[0]);
i2 = pl.where(y_diff==y_diff_sorted[1]);
fwhm = pl.absolute(xx[i1]-xx[i2]);
return hm, fwhm, xx, ym
示例9: calcAUC
def calcAUC(data, y0, lag, mgr, asym, time):
"""
Calculate the area under the curve of the logistic function
using its integrated formula
[ A( [A-y0] log[ exp( [4m(l-t)/A]+2 )+1 ]) / 4m ] + At
"""
# First check that max growth rate is not zero
# If so, calculate using the data instead of the equation
if mgr == 0:
auc = calcAUCData(data, time)
else:
timeS = time[0]
timeE = time[-1]
t1 = asym - y0
#try:
t2_s = py.log(py.exp((4 * mgr * (lag - timeS) / asym) + 2) + 1)
t2_e = py.log(py.exp((4 * mgr * (lag - timeE) / asym) + 2) + 1)
#except RuntimeWarning as rw:
# Exponent is too large, setting to 10^3
# newexp = 1000
# t2_s = py.log(newexp + 1)
# t2_e = py.log(newexp + 1)
t3 = 4 * mgr
t4_s = asym * timeS
t4_e = asym * timeE
start = (asym * (t1 * t2_s) / t3) + t4_s
end = (asym * (t1 * t2_e) / t3) + t4_e
auc = end - start
if py.absolute(auc) == float('Inf'):
x = py.diff(time)
auc = py.sum(x * data[1:])
return auc
示例10: merge_data_csvs
def merge_data_csvs(id):
df = pandas.DataFrame()
dir = dismod3.settings.JOB_WORKING_DIR % id
#print dir
for f in sorted(glob.glob('%s/posterior/data-*.csv'%dir)):
#print 'merging %s' % f
df2 = pandas.read_csv(f, index_col=None)
df2.index = df2['index']
df = df.drop(set(df.index)&set(df2.index)).append(df2)
df['residual'] = df['value'] - df['mu_pred']
df['scaled_residual'] = df['residual'] / pl.sqrt(df['value'] * (1 - df['value']) / df['effective_sample_size'])
#df['scaled_residual'] = df['residual'] * pl.sqrt(df['effective_sample_size']) # including
df['abs_scaled_residual'] = pl.absolute(df['scaled_residual'])
d = .005 # TODO: save delta in these files, use negative binomial to calc logp
df['logp'] = [mc.negative_binomial_like(x*n, (p+1e-3)*n, d*(p+1e-3)*n) for x,p,n in zip(df['value'], df['mu_pred'], df['effective_sample_size'])]
df['logp'][df['data_type'] == 'rr'] = df['scaled_residual'][df['data_type'] == 'rr']
df = df.sort('logp')
#print df.filter('data_type area age_start age_end year_start sex effective_sample_size value residual logp'.split())[:25]
return df
示例11: rank_by_distance_avg
def rank_by_distance_avg(self, qkeys, ikeys, rkeys, dists):
"""
::
Reduce timbre-channel distances to ranks list by ground-truth key indices
Kullback distances
"""
# timbre-channel search using pre-computed distances
ranks_list = []
t_keys, t_lens = self.get_adb_lists(0)
rdists=pylab.ones(len(t_keys))*float('inf')
for t_chan in range(self.timbre_channels): # timbre channels
t_keys, t_lens = self.get_adb_lists(t_chan)
for i, ikey in enumerate(ikeys[t_chan]): # include keys, results
try:
# find dist of key i for query
i_idx = rkeys[t_chan].index( ikey ) # lower_bounded include-key index
a_idx = t_keys.index( ikey ) # audiodb include-key index
# the reduced distance function in include_keys order
# distance is the sum for now
if t_chan:
rdists[a_idx] += dists[t_chan][i_idx]
else:
rdists[a_idx] = dists[t_chan][i_idx]
except:
print "Key not found in result list: ", ikey, "for query:", qkeys[t_chan]
raise error.BregmanError()
#search for the index of the relevant keys
rdists = pylab.absolute(rdists)
sort_idx = pylab.argsort(rdists) # Sort fields into database order
for r in self.ground_truth: # relevant keys
ranks_list.append(pylab.where(sort_idx==r)[0][0]) # Rank of the relevant key
return ranks_list, rdists
示例12: unimodal_rate
def unimodal_rate(f=rate, age_indices=age_indices, tau=1.e5):
df = pl.diff(f[age_indices])
sign_changes = pl.find((df[:-1] > NEARLY_ZERO) & (df[1:] < -NEARLY_ZERO))
sign = pl.ones(len(age_indices)-2)
if len(sign_changes) > 0:
change_age = sign_changes[len(sign_changes)/2]
sign[change_age:] = -1.
return -tau*pl.dot(pl.absolute(df[:-1]), (sign * df[:-1] < 0))
示例13: _calculate_spectra_sussix
def _calculate_spectra_sussix(sx, sy, Q_x, Q_y, Q_s, n_lines):
n_turns, n_files = sx.shape
# Allocate memory for output.
oxx, axx = plt.zeros((n_lines, n_files)), plt.zeros((n_lines, n_files))
oyy, ayy = plt.zeros((n_lines, n_files)), plt.zeros((n_lines, n_files))
# Initialise Sussix object.
SX = PySussix.Sussix()
x, xp, y, yp = sx.real, sx.imag, sy.real, sy.imag
for file_i in xrange(n_files):
SX.sussix_inp(nt1=1, nt2=n_turns, idam=2, ir=0, tunex=Q_x[file_i] % 1, tuney=Q_y[file_i] % 1)
SX.sussix(x[:,file_i], xp[:,file_i], y[:,file_i], yp[:,file_i], sx[:,file_i], sx[:,file_i])
# Amplitude normalisation
SX.ax /= plt.amax(SX.ax)
SX.ay /= plt.amax(SX.ay)
# Tunes
SX.ox = plt.absolute(SX.ox)
SX.oy = plt.absolute(SX.oy)
if file_i==0:
tunexsx = SX.ox[plt.argmax(SX.ax)]
tuneysx = SX.oy[plt.argmax(SX.ay)]
print "\n*** Tunes from Sussix"
print " tunex", tunexsx, ", tuney", tuneysx, "\n"
# Tune normalisation
SX.ox = (SX.ox - (Q_x[file_i] % 1)) / Q_s[file_i]
SX.oy = (SX.oy - (Q_y[file_i] % 1)) / Q_s[file_i]
# Sort
CX = plt.rec.fromarrays([SX.ox, SX.ax], names='ox, ax')
CX.sort(order='ax')
CY = plt.rec.fromarrays([SX.oy, SX.ay], names='oy, ay')
CY.sort(order='ay')
ox, ax, oy, ay = CX.ox, CX.ax, CY.oy, CY.ay
oxx[:,file_i], axx[:,file_i], oyy[:,file_i], ayy[:,file_i] = ox, ax, oy, ay
spectra = {}
spectra['horizontal'] = (oxx, axx)
spectra['vertical'] = (oyy, ayy)
return spectra
示例14: xyamb
def xyamb(xytab,qu,xyout=''):
mytb=taskinit.tbtool()
if not isinstance(qu,tuple):
raise Exception,'qu must be a tuple: (Q,U)'
if xyout=='':
xyout=xytab
if xyout!=xytab:
os.system('cp -r '+xytab+' '+xyout)
QUexp=complex(qu[0],qu[1])
print 'Expected QU = ',qu # , ' (',pl.angle(QUexp)*180/pi,')'
mytb.open(xyout,nomodify=False)
QU=mytb.getkeyword('QU')['QU']
P=pl.sqrt(QU[0,:]**2+QU[1,:]**2)
nspw=P.shape[0]
for ispw in range(nspw):
st=mytb.query('SPECTRAL_WINDOW_ID=='+str(ispw))
if (st.nrows()>0):
q=QU[0,ispw]
u=QU[1,ispw]
qufound=complex(q,u)
c=st.getcol('CPARAM')
fl=st.getcol('FLAG')
xyph0=pl.angle(pl.mean(c[0,:,:][pl.logical_not(fl[0,:,:])]),True)
print 'Spw = '+str(ispw)+': Found QU = '+str(QU[:,ispw]) # +' ('+str(pl.angle(qufound)*180/pi)+')'
#if ( (abs(q)>0.0 and abs(qu[0])>0.0 and (q/qu[0])<0.0) or
# (abs(u)>0.0 and abs(qu[1])>0.0 and (u/qu[1])<0.0) ):
if ( pl.absolute(pl.angle(qufound/QUexp)*180/pi)>90.0 ):
c[0,:,:]*=-1.0
xyph1=pl.angle(pl.mean(c[0,:,:][pl.logical_not(fl[0,:,:])]),True)
st.putcol('CPARAM',c)
QU[:,ispw]*=-1
print ' ...CONVERTING X-Y phase from '+str(xyph0)+' to '+str(xyph1)+' deg'
else:
print ' ...KEEPING X-Y phase '+str(xyph0)+' deg'
st.close()
QUr={}
QUr['QU']=QU
mytb.putkeyword('QU',QUr)
mytb.close()
QUm=pl.mean(QU[:,P>0],1)
QUe=pl.std(QU[:,P>0],1)
Pm=pl.sqrt(QUm[0]**2+QUm[1]**2)
Xm=0.5*atan2(QUm[1],QUm[0])*180/pi
print 'Ambiguity resolved (spw mean): Q=',QUm[0],'U=',QUm[1],'(rms=',QUe[0],QUe[1],')','P=',Pm,'X=',Xm
stokes=[1.0,QUm[0],QUm[1],0.0]
print 'Returning the following Stokes vector: '+str(stokes)
return stokes
示例15: _power
def _power(self):
if not self._have_stft:
if not self._stft():
return False
fp = self._check_feature_params()
self.POWER=(pylab.absolute(self.STFT)**2).sum(0)
self._have_power=True
if fp['verbosity']:
print "Extracted POWER"
return True