本文整理汇总了Python中pyhrf.verbose函数的典型用法代码示例。如果您正苦于以下问题:Python verbose函数的具体用法?Python verbose怎么用?Python verbose使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了verbose函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_gls_recursive
def test_gls_recursive(self):
cmd = ["pyhrf_gls", "-r", self.tmp_dir]
output = check_output(cmd)
pyhrf.verbose(1, "output:")
pyhrf.verbose(1, output)
expected_ouput = """%s:
%s/subject1:
%s/subject1/fmri:
paradigm.csv
%s/subject1/fmri/analysis:
analysis_result_1.nii
analysis_result_2.csv
analysis_summary.txt
%s/subject1/fmri/run1:
bold_scan_[1...3].nii
%s/subject1/fmri/run2:
bold_scan_[1...3].nii
%s/subject1/t1mri:
anatomy.{hdr,img}
""" % (
(self.tmp_dir,) * 7
)
if output != expected_ouput:
raise Exception(
"Output of command %s is not as expected.\n"
"Output is:\n%sExcepted:\n%s" % (" ".join(cmd), output, expected_ouput)
)
示例2: __init__
def __init__(self, sampled_variables, nb_its_max, obs_pace=1, burnin=.3,
sample_hist_pace=-1, obs_hist_pace=-1,):
self.variables = {}
self.sampled_variables = sampled_variables
for v in sampled_variables:
self.set_variable(v.name, v)
def get_fraction_or_nb(nb, tot):
if nb>0. and nb<1.:
return int(round(tot * nb))
else:
return nb
self.nb_its_max = nb_its_max
self.burnin = get_fraction_or_nb(burnin, nb_its_max)
self.smpl_hist_pace = get_fraction_or_nb(sample_hist_pace, nb_its_max)
self.obs_hist_pace = get_fraction_or_nb(obs_hist_pace, nb_its_max)
self.tracked_quantities = {}
pyhrf.verbose(1, 'GibbsSampler init. Burnin: %d, nb_its_max: %d, '\
'smpl_hist_pace: %d, obs_hist_pace: %d,'\
%(self.burnin, self.nb_its_max, self.smpl_hist_pace,
self.obs_hist_pace))
示例3: computeComponentsApost
def computeComponentsApost(self, variables, j, XhtQXh):
sIMixtP = variables[self.samplerEngine.I_MIXT_PARAM]
var = sIMixtP.getCurrentVars()
mean = sIMixtP.getCurrentMeans()
rb = variables[self.samplerEngine.I_NOISE_VAR].currentValue
nrls = self.currentValue
#for j in xrange(self.nbConditions):
gTQgjrb = XhtQXh[:,j]/rb # de taille nbVox
ej = self.varYtilde + repmat(nrls[j,:], self.ny, 1) * self.varXh[:,:,j].swapaxes(0,1)
numpy.divide(diag(dot(self.varXhtQ[:,j,:],ej)), rb, self.varXjhtQjeji)
for c in xrange(self.nbClasses): #ici classe: 0 (inactif) ou 1 (actif)
self.varClassApost[c,j,:] = 1./(1./var[c,j] + gTQgjrb)
numpy.sqrt(self.varClassApost[c,j,:], self.sigClassApost[c,j,:])
if c > 0: # assume 0 stands for inactivating class
numpy.multiply(self.varClassApost[c,j,:],
add(mean[c,j]/var[c,j], self.varXjhtQjeji),
self.meanClassApost[c,j,:])
else:
multiply(self.varClassApost[c,j,:], self.varXjhtQjeji,
self.meanClassApost[c,j,:])
pyhrf.verbose(5, 'meanClassApost %d cond %d :'%(c,j))
pyhrf.verbose.printNdarray(5, self.meanClassApost[c,j,:])
示例4: packSamplerInput
def packSamplerInput(self, roiData):
try:
shrf = self.sampler.getVariable('hrf')
except KeyError:
shrf = self.sampler.getVariable('brf')
hrfDuration = shrf.duration
zc = shrf.zc
simu = None
if simu != None and shrf.sampleFlag==0:
hrfDuration = (len(simu.hrf.get_hrf(0,0))-1)*simu.hrf.dt
pyhrf.verbose(6,'Found simulation data and hrf is '\
'not sampled, setting hrfDuration to:' \
+str(hrfDuration))
pyhrf.verbose(2,'building BOLDSamplerInput ...')
if simu == None or shrf.sampleFlag:
dt = self.dt if (self.dt!=None and self.dt!=0.) else -self.dtMin
elif simu != None and shrf.sampleFlag == 0:
dt = simu.hrf.dt
samplerInput = self.sampler.inputClass(roiData, dt=dt,
typeLFD=self.driftLfdType,
paramLFD=self.driftLfdParam,
hrfZc=zc,
hrfDuration=hrfDuration)
return samplerInput
示例5: _compute_graph
def _compute_graph(self):
if self.data_type != 'volume':
raise Exception('Can only compute graph for volume data')
pyhrf.verbose(6, 'FmriData._compute_graph() ...')
to_discard = [self.backgroundLabel]
self._graph = parcels_to_graphs(self.roiMask, kerMask3D_6n,
toDiscard=to_discard)
示例6: checkAndSetInitValue
def checkAndSetInitValue(self, variables):
smplVarDrift = variables[self.samplerEngine.I_ETA]
smplVarDrift.checkAndSetInitValue(variables)
varDrift = smplVarDrift.currentValue
if self.useTrueValue :
if self.trueValue is not None:
self.currentValue = self.trueValue
else:
raise Exception('Needed a true value for drift init but '\
'None defined')
if 0 and self.currentValue is None :
#if not self.sampleFlag and self.dataInput.simulData is None :
#self.currentValue = self.dataInput.simulData.drift.lfd
#pyhrf.verbose(6,'drift dimensions :' \
#+str(self.currentValue.shape))
#pyhrf.verbose(6,'self.dimDrift :' \
#+str(self.dimDrift))
#assert self.dimDrift == self.currentValue.shape[0]
#else:
self.currentValue = np.sqrt(varDrift) * \
np.random.randn(self.dimDrift, self.nbVox)
if self.currentValue is None:
pyhrf.verbose(1,"Initialisation of Drift from the data")
ptp = numpy.dot(self.P.transpose(),self.P)
invptp = numpy.linalg.inv(ptp)
invptppt = numpy.dot(invptp, self.P.transpose())
self.currentValue = numpy.dot(invptppt,self.dataInput.varMBY)
self.updateNorm()
self.matPl = dot(self.P, self.currentValue)
self.ones_Q_J = np.ones((self.dimDrift, self.nbVox))
self.ones_Q = np.ones((self.dimDrift))
示例7: remote_copy
def remote_copy(files, host, user, path, transfer_tool='ssh'):
if transfer_tool == 'paramiko':
import paramiko
pyhrf.verbose(1, 'Copying files to remote destination %[email protected]%s:%s ...' \
%(host,user,path))
ssh = paramiko.SSHClient()
known_hosts_file = os.path.join("~", ".ssh", "known_hosts")
ssh.load_host_keys(os.path.expanduser(known_hosts_file))
ssh.connect(host, username=user)
sftp = ssh.open_sftp()
for f in files:
remotepath = op.join(path,op.basename(f))
pyhrf.verbose(2, f + ' -> ' + remotepath + ' ...')
flocal = open(f)
remote_file = sftp.file(remotepath, "wb")
remote_file.set_pipelined(True)
remote_file.write(flocal.read())
flocal.close()
remote_file.close()
sftp.close()
ssh.close()
else:
sfiles = string.join(['"%s"'%f for f in files], ' ')
scp_cmd = 'scp -C %s "%[email protected]%s:%s"' %(sfiles, user, host, path)
pyhrf.verbose(1, 'Data files transfer with scp ...')
pyhrf.verbose(2, scp_cmd)
if os.system(scp_cmd) != 0:
raise Exception('Error while scp ...')
pyhrf.verbose(1, 'Copy done!')
return [op.join(path,op.basename(f)) for f in files]
示例8: sampleNextInternal
def sampleNextInternal(self, variables):
#TODO : comment
sIMixtP = variables[self.samplerEngine.I_MIXT_PARAM_NRLS_BAR]
varCI = sIMixtP.currentValue[sIMixtP.I_VAR_CI]
varCA = sIMixtP.currentValue[sIMixtP.I_VAR_CA]
meanCA = sIMixtP.currentValue[sIMixtP.I_MEAN_CA]
self.labelsSamples = rand(self.nbConditions, self.nbVox)
self.nrlsSamples = randn(self.nbConditions, self.nbVox)
if self.imm:
#self.sampleNrlsParallel(varXh, rb, h, varLambda, varCI,
# varCA, meanCA, gTQg, variables)
raise NotImplementedError("IMM with drift sampling is not available")
else: #smm
self.sampleNrlsSerial(varCI, varCA, meanCA, variables)
#self.computeVarYTildeOpt(varXh)
#matPl = self.samplerEngine.getVariable('drift').matPl
#self.varYbar = self.varYtilde - matPl
if (self.currentValue >= 1000).any() and \
pyhrf.__usemode__ == pyhrf.DEVEL:
pyhrf.verbose(2, "Weird NRL values detected ! %d/%d" \
%((self.currentValue >= 1000).sum(),
self.nbVox*self.nbConditions) )
#pyhrf.verbose.set_verbosity(6)
if pyhrf.verbose.verbosity >= 4:
self.reportDetection()
self.printState(4)
self.iteration += 1 #TODO : factorize !!
示例9: from_py_object
def from_py_object(self, label, obj, parent=None):
pyhrf.verbose(6, "UiNode.from_py_object(label=%s,obj=%s) ..." % (label, str(obj)))
if isinstance(obj, Initable):
n = obj.to_ui_node(label, parent)
else:
if UiNode._pyobj_has_leaf_type(obj):
if isinstance(obj, np.ndarray):
dt = str(obj.dtype.name)
sh = str(obj.shape)
n = UiNode(label, attributes={"type": "ndarray", "dtype": dt, "shape": sh})
s = " ".join(str(e) for e in obj.ravel())
n.add_child(UiNode(s))
elif obj is None:
n = UiNode(label, attributes={"type": "None"})
n.add_child(UiNode("None"))
else:
n = UiNode(label, attributes={"type": obj.__class__})
n.add_child(UiNode(str(obj)))
elif isinstance(obj, list):
n = UiNode(label, attributes={"type": "list"})
for i, sub_val in enumerate(obj):
n.add_child(UiNode.from_py_object("item%d" % i, sub_val))
elif isinstance(obj, (dict, OrderedDict)):
t = ["odict", "dict"][obj.__class__ == dict]
n = UiNode(label, attributes={"type": t})
for k, v in obj.iteritems():
n.add_child(UiNode.from_py_object(k, v))
else:
raise Exception(
"In UiNode.from_py_object, unsupported object: " "%s (type: %s)" % (str(obj), str(type(obj)))
)
return n
示例10: analyse_roi
def analyse_roi(self, atomData):
"""
Launch the JDE Gibbs Sampler on a parcel-specific data set *atomData*
Args:
- atomData (pyhrf.core.FmriData): parcel-specific data
Returns:
JDE sampler object
"""
#print 'atomData:', atomData
if self.copy_sampler:
sampler = copyModule.deepcopy(self.sampler)
else:
sampler = self.sampler
sInput = self.packSamplerInput(atomData)
sampler.linkToData(sInput)
#if self.parameters[self.P_RANDOM_SEED] is not None:
# np.random.seed(self.parameters[self.P_RANDOM_SEED])
# #HACK:
# if len(self.roi_ids) > 0:
# if atomData.get_roi_id() not in self.roi_ids:
# return None
pyhrf.verbose(1, 'Treating region %d' %(atomData.get_roi_id()))
sampler.runSampling()
pyhrf.verbose(1, 'Cleaning memory ...')
sampler.dataInput.cleanMem()
return sampler
示例11: project_fmri
def project_fmri(input_mesh, data_file, output_tex_file,
output_kernels_file=None, data_resolution=None,
geod_decay=5., norm_decay=2., kernel_size=7,
tex_bin_threshold=None):
if output_kernels_file is None:
tmp_dir = tempfile.mkdtemp(prefix='pyhrf_surf_proj',
dir=pyhrf.cfg['global']['tmp_path'])
kernels_file = op.join(tmp_dir, add_suffix(op.basename(data_file),
'_kernels'))
tmp_kernels_file = True
else:
kernels_file = output_kernels_file
tmp_kernels_file = False
if data_resolution is not None:
resolution = data_resolution
else:
resolution = read_spatial_resolution(data_file)
pyhrf.verbose(1,'Data resolution: %s' %resolution)
pyhrf.verbose(2,'Projection parameters:')
pyhrf.verbose(2,' - geodesic decay: %f mm' %geod_decay)
pyhrf.verbose(2,' - normal decay: %f mm' %norm_decay)
pyhrf.verbose(2,' - kernel size: %f voxels' %kernel_size)
create_projection_kernels(input_mesh, kernels_file, resolution,
geod_decay, norm_decay, kernel_size)
project_fmri_from_kernels(input_mesh, kernels_file, data_file,
output_tex_file, tex_bin_threshold)
if tmp_kernels_file:
os.remove(kernels_file)
示例12: test_ward_spatial_real_data
def test_ward_spatial_real_data(self):
from pyhrf.glm import glm_nipy_from_files
#pyhrf.verbose.verbosity = 2
fn = 'subj0_parcellation.nii.gz'
mask_file = pyhrf.get_data_file_name(fn)
bold = 'subj0_bold_session0.nii.gz'
bold_file = pyhrf.get_data_file_name(bold)
paradigm_csv_file = pyhrf.get_data_file_name('paradigm_loc_av.csv')
output_dir = self.tmp_dir
output_file = op.join(output_dir,
'parcellation_output_test_real_data.nii')
tr=2.4
bet = glm_nipy_from_files(bold_file, tr,
paradigm_csv_file, output_dir,
mask_file, session=0,
contrasts=None,
hrf_model='Canonical',
drift_model='Cosine', hfcut=128,
residuals_model='spherical',
fit_method='ols', fir_delays=[0])[0]
pyhrf.verbose(2, 'betas_files: %s' %' '.join(bet))
cmd = 'pyhrf_parcellate_glm -m %s %s -o %s -v %d -n %d '\
'-t ward_spatial ' \
%(mask_file, ' '.join(bet), output_file,
pyhrf.verbose.verbosity, 10)
if os.system(cmd) != 0 :
raise Exception('"' + cmd + '" did not execute correctly')
pyhrf.verbose(1, 'cmd: %s' %cmd)
示例13: checkAndSetInitHabit
def checkAndSetInitHabit(self, variables) :
# init habituation speed factors and time-varying NRLs
if self.habits == None : # if no habituation speed specified
if not self.sampleHabitFlag :
if self.dataInput.simulData != None : # Attention: on a un probleme si on fait tourner ce modele sur des donnees simulees par le modele stationnaire. Dans ce cas, il faut forcer ici a passer et prendre des habits nulles
## using simulated Data for HABITUATION sampling
print "load Habituation from simulData", self.dataInput.simulData.habitspeed.data
self.habits = self.dataInput.simulData.habitspeed.data
self.timeNrls = self.dataInput.simulData.nrls.timeNrls
self.Gamma = self.setupGamma()
else : # sinon, on prend que des zeros (modele stationnaire)
self.habits = numpy.zeros((self.nbConditions, self.nbVox), dtype=float)
self.setupTimeNrls()
else:
pyhrf.verbose(2, "Uniform set up of habituation factors")
habitCurrent = numpy.zeros((self.nbConditions, self.nbVox), dtype=float)
for nc in xrange(self.nbConditions):
habitCurrent[nc,self.voxIdx[1][nc]] = numpy.random.rand(self.cardClass[1][nc])
self.habits = habitCurrent
if self.outputRatio :
self.ratio = zeros((self.nbConditions, self.nbVox, 2), dtype = float)
self.ratiocourbe = zeros((self.nbConditions, self.nbVox, 100, 5), dtype = float)
self.compteur = numpy.zeros((self.nbConditions, self.nbVox), dtype=float)
self.setupTimeNrls()
pyhrf.verbose(4, 'habituation initiale')
pyhrf.verbose.printNdarray(5, self.habits)
示例14: create_hrf_from_territories
def create_hrf_from_territories(hrf_territories, primary_hrfs):
pyhrf.verbose(1,'create_hrf_from_territories ...')
pyhrf.verbose(1,' inputs: hrf_territories %s, primary_hrfs (%d,%d)' \
%(str(hrf_territories.shape), len(primary_hrfs),
len(primary_hrfs[0][0])))
assert hrf_territories.ndim == 1
hrfs = np.zeros((hrf_territories.size,primary_hrfs[0][0].size))
territories = np.unique(hrf_territories)
territories.sort()
if territories.min() == 1:
territories = territories - 1
assert territories.min() == 0
assert territories.max() <= len(primary_hrfs)
#print hrfs.shape
#sm = ','.join(['m[%d]'%d for d in range(hrf_territories.ndim)] + [':'])
for territory in territories:
#TODO: test consitency in hrf lengths
m = np.where(hrf_territories==territory)[0]
# print 'm:',m
# print 'hrfs[m,:].shape:', hrfs[m,:].shape
# print 'primary_hrfs[territory][1].shape:', \
# primary_hrfs[territory][1].shape
# print primary_hrfs[territory][1]
#print hrfs[m,:].shape
#exec('hrfs[%s] = primary_hrfs[territory][1]' %sm)
hrfs[m,:] = primary_hrfs[territory][1]
#print hrfs[m,:]
return hrfs.transpose()
示例15: create_asl_from_stim_induced
def create_asl_from_stim_induced(bold_stim_induced, perf_stim_induced,
ctrl_tag_mat, dsf,
perf_baseline, noise, drift=None, outliers=None):
"""
Downsample stim_induced signal according to downsampling factor 'dsf' and
add noise and drift (nuisance signals) which has to be at downsampled
temporal resolution.
"""
bold = bold_stim_induced[0:-1:dsf,:].copy()
perf = np.dot(ctrl_tag_mat, (perf_stim_induced[0:-1:dsf,:].copy() + \
perf_baseline))
pyhrf.verbose(3, 'create_asl_from_stim_induced ...')
pyhrf.verbose(3, 'bold shape: %s, perf_shape: %s, noise shape: %s, '\
'drift shape: %s' %(str(bold.shape), str(perf.shape),
str(noise.shape), str(drift.shape)))
asl = bold + perf
if drift is not None:
asl += drift
if outliers is not None:
asl += outliers
asl += noise
return asl