当前位置: 首页>>代码示例>>Python>>正文


Python SD.SD类代码示例

本文整理汇总了Python中pyhdf.SD.SD的典型用法代码示例。如果您正苦于以下问题:Python SD类的具体用法?Python SD怎么用?Python SD使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了SD类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_variable_names

    def get_variable_names(self, filenames, data_type=None):
        try:
            from pyhdf.SD import SD
            from pyhdf.HDF import HDF
        except ImportError:
            raise ImportError("HDF support was not installed, please reinstall with pyhdf to read HDF files.")

        valid_variables = set([])
        for filename in filenames:
            # Do VD variables
            datafile = HDF(filename)
            vdata = datafile.vstart()
            variables = vdata.vdatainfo()
            # Assumes that latitude shape == longitude shape (it should):
            # dim_length = [var[3] for var in variables if var[0] == 'Latitude'][0]
            for var in variables:
                # if var[3] == dim_length:
                valid_variables.add(var[0])

            # Do SD variables:
            sd = SD(filename)
            datasets = sd.datasets()
            # if 'Height' in datasets:
            #     valid_shape = datasets['Height'][1]
            for var in datasets:
                    # if datasets[var][1] == valid_shape:
                valid_variables.add(var)

        return valid_variables
开发者ID:duncanwp,项目名称:cis_plugins,代码行数:29,代码来源:cloudsat_modis.py

示例2: read_rrc

def read_rrc(inpath):
    '''Read rrc data m*n from hdf file'''

    '''b1-5;b13-16 for MODIS Rrc
        Rrc_1238 Rrc_443-862 ozone senz solz for VIIRS rrc   
    '''  
    hdf = SD(inpath, SDC.READ)
    #dts = sorted(hdf.datasets().keys())
    modis_key = ['CorrRefl_01','CorrRefl_02','CorrRefl_03','CorrRefl_04','CorrRefl_05',
                 'CorrRefl_13','CorrRefl_14','CorrRefl_15','CorrRefl_16']
    viirs_key = ['Rrc_443','Rrc_486','Rrc_551','Rrc_671','Rrc_745','Rrc_862','Rrc_1238']
    mission = os.path.basename(inpath)[0]
    if mission =='A' or mission =='T':keys = modis_key
    elif mission=='V':keys = viirs_key
    else:keys = hdf.datasets().keys()
    for i,dt in enumerate(keys):
        print(i,dt)
        band = hdf.select(dt)[:,:]        
        if i==0:             
            limit = (band.shape[0],band.shape[1],len(keys))            
            rrc = np.zeros(limit,dtype = np.float)
            rrc[:,:,i] = band
        else:
            rrc[:,:,i] = band
    hdf.end()
    print(rrc.shape)
    return rrc
开发者ID:zgcao,项目名称:learningpy,代码行数:27,代码来源:disp_rrc_aqua_viirs.py

示例3: run

def run(FILE_NAME):

    DATAFIELD_NAME = 'dHat'

    if USE_NETCDF4:
        from netCDF4 import Dataset    
        nc = Dataset(FILE_NAME)
        var = nc.variables[DATAFIELD_NAME]
        # This datafield has scale factor and add offset attributes, but no
        # fill value.  We'll turn off automatic scaling and do it ourselves.
        var.set_auto_maskandscale(False)
        data = nc.variables[DATAFIELD_NAME][:].astype(np.float64)

        # Retrieve scale/offset attributes.
        scale_factor = var.scale_factor
        add_offset = var.add_offset
    
        # Retrieve the geolocation data.
        latitude = nc.variables['geolocation'][:,:,0]
        longitude = nc.variables['geolocation'][:,:,1]
    else:
        from pyhdf.SD import SD, SDC
        hdf = SD(FILE_NAME, SDC.READ)
        
        ds = hdf.select(DATAFIELD_NAME)
        data = ds[:,:].astype(np.double)

        # Handle scale/osffset attributes.
        attrs = ds.attributes(full=1)
        sfa=attrs["scale_factor"]
        scale_factor = sfa[0]
        aoa=attrs["add_offset"]
        add_offset = aoa[0]

        # Retrieve the geolocation data.        
        geo = hdf.select('geolocation')
        latitude = geo[:,:,0]
        longitude = geo[:,:,1]

    data = data / scale_factor + add_offset
    
    # Draw an equidistant cylindrical projection using the high resolution
    # coastline database.
    m = Basemap(projection='cyl', resolution='h',
                llcrnrlat=30, urcrnrlat = 36,
                llcrnrlon=121, urcrnrlon = 133)
    m.drawcoastlines(linewidth=0.5)
    m.drawparallels(np.arange(30, 37), labels=[1, 0, 0, 0])
    m.drawmeridians(np.arange(121, 133, 2), labels=[0, 0, 0, 1])
    m.pcolormesh(longitude, latitude, data, latlon=True)
    cb = m.colorbar()
    cb.set_label('Unit:mm')

    basename = os.path.basename(FILE_NAME)
    plt.title('{0}\n{1}'.format(basename, DATAFIELD_NAME))
    fig = plt.gcf()
    # plt.show()
    
    pngfile = "{0}.py.png".format(basename)
    fig.savefig(pngfile)
开发者ID:hdfeos,项目名称:zoo_python,代码行数:60,代码来源:TRMM_2B31_CSI_dHat_zoom.py

示例4: load

 def load(self, fldname, **kwargs):
     """ Load Cali Current fields for a given day"""
     self._timeparams(**kwargs)
     
     if fldname == 'chl':
         filename = "/C%04i%03i_chl_mapped.hdf" % (self.yr, self.yd)
         #ncfieldname = 'chl_%04i_%03i' % (yr,yd)
         def scale(PV): return 10**(PV*0.015-2)
     elif fldname == 'sst':
         filename = "/M%04i%03i_sst_mapped.hdf" % (self.yr, self.yd)
         #ncfieldname = 'sst_%04i_%03i' % (yr,yd)            
         def scale(PV): return PV*0.15000001-3
     if not os.path.isfile(self.datadir + filename):
         print "Downloading " + filename
         self.download(fldname, self.jd)
         
     h = SD(self.datadir + filename,SDC.READ)        
     ncfieldname = h.datasets().keys()[0]
     fld =  h.select(ncfieldname)
     attr = fld.attributes()
     PV = fld[:].astype(np.float)
     PV[PV<0] = PV[PV<0]+256
     PV[PV==0]   = np.nan
     PV[PV==255] = np.nan
     setattr(self, fldname, scale(PV)[self.j1:self.j2, self.i1:self.i2])
开发者ID:brorfred,项目名称:njord,代码行数:25,代码来源:mati.py

示例5: main

def main():

    varname_to_rpn_name = {
        "precipitation": "PR",
        "relativeError": "RERR"
    }

    varnames = list(varname_to_rpn_name.keys())

    target_dir = "/skynet3_rech1/huziy/from_hdf4"
    source_dir = "/st1_fs2/winger/Validation/TRMM/HDF_format"

    for f_name in os.listdir(source_dir):
        if not f_name.endswith("HDF"):
            continue

        path = os.path.join(source_dir, f_name)
        ds = SD(path)
        print(ds.datasets())
        target_path = os.path.join(target_dir, f_name + ".rpn")
        r_obj = RPN(target_path, mode="w")
        for varname in varnames:
            var_data = ds.select(varname)[0, :, :]
            r_obj.write_2D_field(
                name=varname_to_rpn_name[varname],
                data=var_data, label=varname, grid_type="L",
                ig = [25, 25, 4013, 18012])
        r_obj.close()
开发者ID:guziy,项目名称:RPN,代码行数:28,代码来源:hdf_test.py

示例6: main

def main(cal_file, with_cp):

    from pyhdf.SD import SD

    if with_cp:
        cmd = 'cp %s /home/noel/scratch/' % (cal_file)
        print "running "+cmd
        os.system(cmd)
        filename = os.path.basename(cal_file)
        cal_file = '/home/noel/scratch/' + filename
                        
    print 'Reading ' + cal_file 
    
    vars = ['Latitude', 'Longitude', 
            'Total_Attenuated_Backscatter_532', 'Attenuated_Backscatter_1064', 'Perpendicular_Attenuated_Backscatter_532',
            'Pressure', 'Temperature', 'Molecular_Number_Density', 'Tropopause_Height', 'Surface_Elevation']
    
    hdf = SD(cal_file)
    for var in vars:
        print 'Reading ' + var
        hdf_var = hdf.select(var)
        data = hdf_var.get()
        hdf_var.endaccess()
    hdf.end()
    
    print 'ok.'
    if with_cp:
        print 'Removing '+filename
        cmd = 'rm -f /home/noel/scratch/' + filename
        os.system(cmd)
开发者ID:vnoel,项目名称:CEL2,代码行数:30,代码来源:test_read_speed.py

示例7: rainfall_anunal_car

def rainfall_anunal_car(year):

    file = glob.glob('/Users/yuewang/Documents/DATA/atl/ATL_3B42V7_rain_accum.'+ str(year)+'*')

    rainfall_0 = []
    for i in file:
        atl =SD(i,SDC.READ)
        rainfall = atl.select('RAIN_TOTAL')
        rainfall_value = rainfall.get()
        rainfall_0.append(rainfall_value)
    
    rainfall_single = np.array(rainfall_0)
    rainfall_anunal = sum(rainfall_single)
    rainfall_anunal_car = rainfall_anunal[238:286,372:476]
    
# calculation none-zone mean value    
    ind = np.where(rainfall_anunal_car != 0)
    rf_annual = []
    for i,j in zip(*ind):
        mm = rainfall_anunal_car[i,j]
        rf_annual.append(mm)
    rf_annual = np.array(rf_annual)
    
    d = np.mean(rf_annual)
    
    return d
开发者ID:yueewang,项目名称:research-,代码行数:26,代码来源:mean_cal.py

示例8: rainfall_anunal_GMX

def rainfall_anunal_GMX(year):

    file = glob.glob('/Users/yuewang/Documents/DATA/atl/ATL_3B42V7_rain_accum.'+ str(year)+'*')

    rainfall_0 = []
    for i in file:
        atl =SD(i,SDC.READ)
        rainfall = atl.select('RAIN_TOTAL')
        rainfall_value = rainfall.get()
        rainfall_0.append(rainfall_value)
    
    rainfall_single = np.array(rainfall_0)
    rainfall_anunal = sum(rainfall_single)
    rainfall_anunal_GMX = rainfall_anunal[280:320,340:400]
    
    ind = np.where(rainfall_anunal_GMX != 0)
    rf_annual = []
    for i,j in zip(*ind):
        mm = rainfall_anunal_GMX[i,j]
        rf_annual.append(mm)
    rf_annual = np.array(rf_annual)
    
    c = np.mean(rf_annual)
    
    return c
开发者ID:yueewang,项目名称:research-,代码行数:25,代码来源:mean_cal.py

示例9: test_1000m_to_250m

    def test_1000m_to_250m(self):
        """Test the 1 km to 250 meter interpolation facility."""
        # gfilename = \
        #      "/san1/test/data/modis/MOD03_A12278_113638_2012278145123.hdf"
        gfilename = "/local_disk/src/python-geotiepoints/tests/MOD03_A12278_113638_2012278145123.hdf"
        # result_filename = \
        #      "/san1/test/data/modis/250m_lonlat_results.npz"
        result_filename = "/local_disk/src/python-geotiepoints/tests/250m_lonlat_results.npz"

        from pyhdf.SD import SD
        from pyhdf.error import HDF4Error

        try:
            gdata = SD(gfilename)
        except HDF4Error:
            print("Failed reading eos-hdf file %s" % gfilename)
            return

        lats = gdata.select("Latitude")[0:50, :]
        lons = gdata.select("Longitude")[0:50, :]

        verif = np.load(result_filename)
        vlons = verif['lons']
        vlats = verif['lats']
        tlons, tlats = modis1kmto250m(lons, lats)

        self.assert_(np.allclose(tlons, vlons, atol=0.05))
        self.assert_(np.allclose(tlats, vlats, atol=0.05))
开发者ID:adybbroe,项目名称:pygac,代码行数:28,代码来源:geotiepoints.py

示例10: test_1000m_to_250m

    def test_1000m_to_250m(self):
        """test the 1 km to 250 meter interpolation facility
        """
        gfilename_hdf = "testdata/MOD03_A12278_113638_2012278145123.hdf"
        gfilename = "testdata/250m_lonlat_section_input.npz"
        result_filename = "testdata/250m_lonlat_section_result.npz"

        from pyhdf.SD import SD
        from pyhdf.error import HDF4Error
        
        gdata = None
        try:
            gdata = SD(gfilename_hdf)
        except HDF4Error:
            print "Failed reading eos-hdf file %s" % gfilename_hdf
            try:
                indata = np.load(gfilename)
            except IOError:
                return

        if gdata:
            lats = gdata.select("Latitude")[20:50, :]
            lons = gdata.select("Longitude")[20:50, :]
        else:
            lats = indata['lat'] / 1000.
            lons = indata['lon'] / 1000.

        verif = np.load(result_filename)
        vlons = verif['lon'] / 1000.
        vlats = verif['lat'] / 1000.
        tlons, tlats = modis1kmto250m(lons, lats)

        self.assert_(np.allclose(tlons, vlons, atol=0.05))
        self.assert_(np.allclose(tlats, vlats, atol=0.05))
开发者ID:bomakoto,项目名称:python-geotiepoints,代码行数:34,代码来源:test_modis.py

示例11: export_multi_fluid_LFM

def export_multi_fluid_LFM(argv):
	if (len(argv) >= 2):
		input_filename = argv[0]
		output_filename = argv[1]
		print input_filename
		sd = SD(input_filename, SDC.READ)

		grid = get_corners(sd)

		timesteps = 0

		# step = 1640000

		for key in sd.datasets().keys():
			shift = key.find('time_step')
			if shift == 0:
				if len(argv) == 3:
					step = argv[2]
					if key == 'time_step_'+str(step):
						export_timestep(sd, output_filename, key, grid)
				else:
					export_timestep(sd, output_filename, key, grid)
				timesteps += 1

		print 'timesteps found in file:', timesteps


	else:
		print 'usage: python lfm_split.py input_multi_timestep_hdf output_filename_prefix step(optional)'
开发者ID:NeelSavani,项目名称:ccmc-software,代码行数:29,代码来源:lfm_split.py

示例12: load_standard_lfm_hdf

def load_standard_lfm_hdf(filename):
	""" Load the standard formated hdf which we want to emulate"""
	f = SD(filename, SDC.READ)
	X_grid = f.select('X_grid')
	Y_grid = f.select('Y_grid')
	Z_grid = f.select('Z_grid')

	# x_grid is size nkp1,njp1,nip1
	(nkp1,njp1,nip1) = X_grid[:].shape
	# The LFM reader expects i to vary fastest, then j, then k
	# However, the LFM pre-converted files store positions with k varying fastest (column-major)
	# Recommend saving in column-major format. If it fails, we can always switch.

	
	# i = 0; j = 0; k = 0
	# print 'printing standard first row'
	# for i in range(nip1):
	# 	print X_grid[k,j,i]/R_e

	# print 'printing j sweep'
	# i = 0; j = 0; k = 0;
	# for j in range(njp1):
	# 	print X_grid[k,j,i]/R_e

	# print 'printing k sweep'
	# i = 0; j = 0; k = 0;
	# for k in range(nkp1):
	# 	print X_grid[k,j,i]/R_e


	print 'standard nip1,njp1,nkp1 =', nip1,njp1,nkp1
	ni = nip1-1
	nj = njp1-1
	nk = nkp1-1
	print 'standard ni,nj,nk =', ni,nj,nk
开发者ID:NeelSavani,项目名称:ccmc-software,代码行数:35,代码来源:lfm_split.py

示例13: write_interpolated

def write_interpolated(filename, f0, f1, fact, datasets):
    '''
    interpolate two hdf files f0 and f1 using factor fact, and
    write the result to filename
    '''

    hdf = SD(filename, SDC.WRITE|SDC.CREATE)
    for dataset in datasets:

        try:
            info = SD(f0).select(dataset).info()
        except:
            print >> stderr, 'Error loading %s in %s' % (dataset, f0)
            raise

        typ  = info[3]
        shp  = info[2]
        met0 = SD(f0).select(dataset).get()
        met1 = SD(f1).select(dataset).get()

        interp = (1-fact)*met0 + fact*met1

        interp = interp.astype({
                SDC.INT16: 'int16',
                SDC.FLOAT32: 'float32',
                SDC.FLOAT64: 'float64',
            }[typ])

        # write
        sds = hdf.create(dataset, typ, shp)
        sds[:] = interp[:]
        sds.endaccess()

    hdf.end()
开发者ID:bcdev,项目名称:oc-cci,代码行数:34,代码来源:common-get_meteo_calvalus.py

示例14: run

def run(FILE_NAME):
    # Identify the data field.
    DATAFIELD_NAME = 'Longwave Flux (2.5R)'

    if USE_NETCDF4:
        from netCDF4 import Dataset
        nc = Dataset(FILE_NAME)
        data = nc.variables[DATAFIELD_NAME][:].astype(np.float64)
    else:
        from pyhdf.SD import SD, SDC
        hdf = SD(FILE_NAME, SDC.READ)
        
        # Read dataset.
        data2D = hdf.select(DATAFIELD_NAME)
        data = data2D[:,:]


    # Set fillvalue and units.
    # See "CERES Data Management System ES-4 Collection Guide" [1] and a sample
    # image by NASA [2] for details.  The fillvalue is 3.4028235E38.  Here, we
    # just use the max of the data.
    fillvalue = np.max(data)
    data[data == fillvalue] = np.nan
    datam = np.ma.masked_array(data, mask=np.isnan(data))
    
    # Set fillvalue and units.
    # See "CERES Data Management System ES-4 Collection Guide" [1] and a
    # sample image by NASA [2] for details.
    # The fillvalue is 3.4028235E38. Here, we use max value from the dataset.
    units = 'Watts/Meter^2'
    ysize, xsize = data.shape
    xinc = 360.0 / xsize
    yinc = 180.0 / ysize
    x0, x1 = (-180, 180)
    y0, y1 = (-90, 90)
    longitude = np.linspace(x0 + xinc/2, x1 - xinc/2, xsize)
    latitude = np.linspace(y0 + yinc/2, y1 - yinc/2, ysize)
    
    # Flip the latitude to run from 90 to -90
    latitude = latitude[::-1]
    
    # The data is global, so render in a global projection.
    m = Basemap(projection='cyl', resolution='l',
                llcrnrlat=-90, urcrnrlat=90,
                llcrnrlon=-180, urcrnrlon=180)
    m.drawcoastlines(linewidth=0.5)
    m.drawparallels(np.arange(-90.,90,45))
    m.drawmeridians(np.arange(-180.,180,45), labels=[True,False,False,True])
    m.pcolormesh(longitude, latitude, datam, latlon=True)
    cb = m.colorbar()

    cb.set_label(units)

    basename = os.path.basename(FILE_NAME)
    plt.title('{0}\n{1}'.format(basename, DATAFIELD_NAME))
    fig = plt.gcf()
    # plt.show()
    pngfile = "{0}.py.png".format(basename)
    fig.savefig(pngfile)
开发者ID:hdfeos,项目名称:zoo_python,代码行数:59,代码来源:CER_ES4_TRMM_Longwave_Flux_2_5_R.py

示例15: __init__

 def __init__(self, filename, filename_info, filetype_info):
     super(HDF4FileHandler, self).__init__(filename, filename_info, filetype_info)
     self.file_content = {}
     file_handle = SD(self.filename, SDC.READ)
     self._collect_attrs('', file_handle.attributes())
     for k, v in file_handle.datasets().items():
         self.collect_metadata(k, file_handle.select(k))
     del file_handle
开发者ID:davidh-ssec,项目名称:satpy,代码行数:8,代码来源:hdf4_utils.py


注:本文中的pyhdf.SD.SD类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。