当前位置: 首页>>代码示例>>Python>>正文


Python gpuarray.empty函数代码示例

本文整理汇总了Python中pygpu.gpuarray.empty函数的典型用法代码示例。如果您正苦于以下问题:Python empty函数的具体用法?Python empty怎么用?Python empty使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了empty函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: elemwise_layouts_mixed

def elemwise_layouts_mixed(shape, offseted_outer, offseted_inner, sliced,
                           order):
    ac, ag = gen_gpuarray(shape, dtype='float32', sliced=sliced, order=order,
                          offseted_outer=offseted_outer,
                          offseted_inner=offseted_inner, ctx=context)
    b = numpy.asarray(2.0, dtype='float32')

    outg = gpuarray.empty(shape, dtype='float32', context=context)

    k = ElemwiseKernel(context, "float *a, float b, float *c",
                       "c[i] = a[i] + b")
    # will use contig or basic
    k(ag, b, outg)
    outc = ac + b
    assert numpy.allclose(numpy.asarray(outg), outc)

    # test basic
    outg = gpuarray.empty(shape, dtype='float32', context=context)
    k.call_basic(ag, b, outg)
    assert numpy.allclose(numpy.asarray(outg), outc)

    # test dimspec
    outg = gpuarray.empty(shape, dtype='float32', context=context)
    k.call_dimspec(ag, b, outg)
    assert numpy.allclose(numpy.asarray(outg), outc)

    # test specialized
    outg = gpuarray.empty(shape, dtype='float32', context=context)
    k.call_specialized(ag, b, outg)
    assert numpy.allclose(numpy.asarray(outg), outc)
开发者ID:chagge,项目名称:libgpuarray,代码行数:30,代码来源:test_elemwise.py

示例2: test_elemwise_bool

def test_elemwise_bool():
    a = gpuarray.empty((2,), context=context)
    exc = None
    try:
        bool(a)
    except ValueError, e:
        exc = e
开发者ID:chagge,项目名称:libgpuarray,代码行数:7,代码来源:test_elemwise.py

示例3: test_reduction_wrong_type

def test_reduction_wrong_type():
    c, g = gen_gpuarray((2, 3), dtype='float32', ctx=context, cls=elemary)
    out1 = gpuarray.empty((2, 3), dtype='int32', context=context)
    out2 = gpuarray.empty((3, 2), dtype='float32', context=context)

    try:
        g.sum(out=out1)
        assert False, "Expected a TypeError out of the sum"
    except TypeError:
        pass

    try:
        g.sum(out=out2)
        assert False, "Expected a TypeError out of the sum"
    except TypeError:
        pass
开发者ID:abergeron,项目名称:libgpuarray,代码行数:16,代码来源:test_reduction.py

示例4: test_hash

def test_hash():
    g = gpu_ndarray.empty((2, 3), context=ctx)
    exc = None
    try:
        h = hash(g)
    except TypeError, e:
        exc = e
开发者ID:MaxBareiss,项目名称:libgpuarray,代码行数:7,代码来源:test_gpu_ndarray.py

示例5: perform

 def perform(self, node, inputs, outs):
     out, = outs
     v = inputs[0]
     sh = tuple(map(int, inputs[1:]))
     if out[0] is None or out[0].shape != sh:
         out[0] = gpuarray.empty(sh, dtype=v.dtype)
     out[0][...] = v
开发者ID:DeepLearningIndia,项目名称:Theano,代码行数:7,代码来源:basic_ops.py

示例6: test_elemwise_bool

def test_elemwise_bool():
    a = gpuarray.empty((2,), context=context)
    exc = None
    try:
        bool(a)
    except ValueError as e:
        exc = e
    assert exc is not None
    a = gpuarray.zeros((1,), context=context)
    assert not bool(a)
    a = gpuarray.zeros((), context=context)
    assert not bool(a)
开发者ID:nouiz,项目名称:libgpuarray,代码行数:12,代码来源:test_elemwise.py

示例7: perform

 def perform(self, node, inputs, outs):
     out, = outs
     v = inputs[0]
     sh = tuple(map(int, inputs[1:]))
     if out[0] is None or out[0].shape != sh:
         if self.memset_0:
             out[0] = gpuarray.zeros(sh, dtype=v.dtype)
         else:
             out[0] = gpuarray.empty(sh, dtype=v.dtype)
             out[0][...] = v
     else:
         out[0][...] = v
     if config.gpuarray.sync:
         out[0].sync()
开发者ID:naisanza,项目名称:Theano,代码行数:14,代码来源:basic_ops.py

示例8: perform

 def perform(self, node, inputs, outs):
     out, = outs
     v = inputs[0]
     sh = tuple(map(int, inputs[1:]))
     if out[0] is None or out[0].shape != sh:
         if v.size == 1 and numpy.asarray(v)[0].item() == 0:
             out[0] = gpuarray.zeros(sh, dtype=v.dtype)
         else:
             out[0] = gpuarray.empty(sh, dtype=v.dtype)
             out[0][...] = v
     else:
         out[0][...] = v
     if config.gpuarray.sync:
         out[0].sync()
开发者ID:clorenz7,项目名称:Theano,代码行数:14,代码来源:basic_ops.py

示例9: reduction_op

def reduction_op(op, dtype, axis):
    c, g = gen_gpuarray((2, 3), dtype=dtype, ctx=context, cls=elemary)

    rc = getattr(c, op)(axis=axis)
    rg = getattr(g, op)(axis=axis)

    check_meta_content(rg, rc)

    outc = numpy.empty(rc.shape, dtype=rc.dtype)
    outg = gpuarray.empty(rg.shape, dtype=rg.dtype, context=context)

    rc = getattr(c, op)(axis=axis, out=outc)
    rg = getattr(g, op)(axis=axis, out=outg)

    check_meta_content(outg, outc)
开发者ID:abergeron,项目名称:libgpuarray,代码行数:15,代码来源:test_reduction.py

示例10: check_elemwise2

 def check_elemwise2(self, shapea, shapeb, output_shape, broadcast=True):
     # We rewrite this version of elemwise2 to skip the scaling of output
     # that is done in the official elemwise2 function.
     na, ga = gen_gpuarray(shapea, ctx=context, cls=elemary)
     nb, gb = gen_gpuarray(shapeb, ctx=context, cls=elemary)
     odtype = get_common_dtype(ga, gb, True)
     res = gpuarray.empty(output_shape, dtype=odtype, context=ga.context, cls=ga.__class__)
     a_arg = as_argument(ga, 'a', read=True)
     b_arg = as_argument(gb, 'b', read=True)
     res_arg = as_argument(res, 'res', write=True)
     args = [res_arg, a_arg, b_arg]
     oper = "res = (%(out_t)s)a %(op)s (%(out_t)s)b" % {'op': '+', 'out_t': dtype_to_ctype(odtype)}
     k = GpuElemwise(ga.context, oper, args, convert_f16=True)
     k(res, ga, gb, broadcast=broadcast)
     nres = na + nb
     assert numpy.allclose(nres, numpy.asarray(res), atol=1e-6)
开发者ID:nouiz,项目名称:libgpuarray,代码行数:16,代码来源:test_elemwise.py

示例11: elemwise_collapse

def elemwise_collapse(dtype1, dtype2, shape1, shape2, expected):
    assert len(shape1) == len(shape2)

    # int8 does not cause problematic upcasts
    scalar = numpy.asarray(1, dtype='int8')

    a_cpu, a_gpu = gen_gpuarray(shape1, dtype1, ctx=context)
    b_cpu, b_gpu = gen_gpuarray(shape2, dtype2, ctx=context)

    o_shape = []
    for i in range(len(shape1)):
        o_shape.append(max(shape1[i], shape2[i]))

    o = gpuarray.empty(o_shape, dtype=(a_cpu + b_cpu).dtype, context=context)

    n, nd, dims, strs, offsets, contig = check_args((a_gpu, b_gpu),
                                                    collapse=True,
                                                    broadcast=True)

    assert nd == expected, (shape1, shape2, dims, nd, expected)

    k = ElemwiseKernel(context, [ArrayArg(numpy.dtype(dtype1), 'a'),
                                 ArrayArg(numpy.dtype(dtype2), 'b'),
                                 ArrayArg(o.dtype, 'o')], "o[i] = a[i] + b[i]")
    out_cpu = a_cpu + b_cpu
    k(a_gpu, b_gpu, o, collapse=True, broadcast=True)

    assert numpy.allclose(numpy.asarray(o), out_cpu)

    k(a_gpu, b_gpu, o, collapse=False, broadcast=True)

    assert numpy.allclose(numpy.asarray(o), out_cpu)

    broadcast = any([True for i in shape1 + shape2
                     if i == 1])

    n, nd, dims, strs, offsets, contig = check_args((a_gpu, b_gpu, scalar),
                                                    collapse=True,
                                                    broadcast=True)
    assert nd == expected

    k = ElemwiseKernel(context, [ArrayArg(numpy.dtype(dtype1), 'a'),
                                 ArrayArg(numpy.dtype(dtype2), 'b'),
                                 ScalarArg(scalar.dtype, 's'),
                                 ArrayArg(o.dtype, 'o')],
                       "o[i] = a[i] + b[i] + s")
    out_cpu = a_cpu + b_cpu + scalar
    k(a_gpu, b_gpu, scalar, o, collapse=True, broadcast=True)

    assert numpy.allclose(numpy.asarray(o), out_cpu)

    k(a_gpu, b_gpu, scalar, o, collapse=False, broadcast=True)

    assert numpy.allclose(numpy.asarray(o), out_cpu)

    if expected == 1:
        expected2 = 2
    else:
        expected2 = expected

    if len(shape1) != 4:
        return

    if shape1[0] != 1:
        c_cpu, c_gpu = gen_gpuarray(shape1, dtype=dtype1, sliced=2, ctx=context)
        n, nd, dims, strs, offsets,contig = check_args((c_gpu, b_gpu),
                                                       collapse=True,
                                                       broadcast=True)
        if broadcast:
            assert nd >= expected
        else:
            assert nd == expected2
开发者ID:chagge,项目名称:libgpuarray,代码行数:72,代码来源:test_elemwise.py

示例12: gpu_alloc_expected

def gpu_alloc_expected(x, *shp):
    g = gpuarray.empty(shp, dtype=x.dtype, context=get_context(test_ctx_name))
    g[:] = x
    return g
开发者ID:DEVESHTARASIA,项目名称:Theano,代码行数:4,代码来源:test_basic_ops.py

示例13: test_reduce_scatter

    def test_reduce_scatter(self):
        texp = self.size * np.arange(5 * self.size) + sum(range(self.size))
        exp = texp[self.rank * 5:self.rank * 5 + 5]

        # order c
        cpu = np.arange(5 * self.size) + self.rank
        np.reshape(cpu, (self.size, 5), order='C')
        gpu = gpuarray.asarray(cpu, context=self.ctx)

        resgpu = gpuarray.empty((5,), dtype='int64', order='C', context=self.ctx)

        self.gpucomm.reduce_scatter(gpu, 'sum', resgpu)
        assert np.allclose(resgpu, exp)

        # order f
        cpu = np.arange(5 * self.size) + self.rank
        np.reshape(cpu, (5, self.size), order='F')
        gpu = gpuarray.asarray(cpu, context=self.ctx)

        resgpu = gpuarray.empty((5,), dtype='int64', order='F', context=self.ctx)

        self.gpucomm.reduce_scatter(gpu, 'sum', resgpu)
        assert np.allclose(resgpu, exp)

        # make result order c (one less dim)
        cpu = np.arange(5 * self.size) + self.rank
        np.reshape(cpu, (self.size, 5), order='C')
        gpu = gpuarray.asarray(cpu, context=self.ctx)

        resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
        check_all(resgpu, exp)
        assert resgpu.flags['C_CONTIGUOUS'] is True

        # c-contiguous split problem (for size == 1, it can always be split)
        if self.size != 1:
            cpu = np.arange(5 * (self.size + 1), dtype='int32') + self.rank
            np.reshape(cpu, (self.size + 1, 5), order='C')
            gpu = gpuarray.asarray(cpu, context=self.ctx)
            with self.assertRaises(TypeError):
                resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')

        # make result order f (one less dim)
        cpu = np.arange(5 * self.size) + self.rank
        np.reshape(cpu, (5, self.size), order='F')
        gpu = gpuarray.asarray(cpu, context=self.ctx)

        resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
        check_all(resgpu, exp)
        assert resgpu.flags['F_CONTIGUOUS'] is True

        # f-contiguous split problem (for size == 1, it can always be split)
        if self.size != 1:
            cpu = np.arange(5 * (self.size + 1), dtype='int32') + self.rank
            np.reshape(cpu, (5, self.size + 1), order='F')
            gpu = gpuarray.asarray(cpu, context=self.ctx)
            with self.assertRaises(TypeError):
                resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')

        # make result order c (same dim - less size)
        texp = self.size * np.arange(5 * self.size * 3) + sum(range(self.size))
        exp = texp[self.rank * 15:self.rank * 15 + 15]
        np.reshape(exp, (3, 5), order='C')
        cpu = np.arange(5 * self.size * 3) + self.rank
        np.reshape(cpu, (self.size * 3, 5), order='C')
        gpu = gpuarray.asarray(cpu, context=self.ctx)

        resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
        check_all(resgpu, exp)
        assert resgpu.flags['C_CONTIGUOUS'] is True

        # make result order f (same dim - less size)
        texp = self.size * np.arange(5 * self.size * 3) + sum(range(self.size))
        exp = texp[self.rank * 15:self.rank * 15 + 15]
        np.reshape(exp, (5, 3), order='F')
        cpu = np.arange(5 * self.size * 3) + self.rank
        np.reshape(cpu, (5, self.size * 3), order='F')
        gpu = gpuarray.asarray(cpu, context=self.ctx)

        resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
        check_all(resgpu, exp)
        assert resgpu.flags['F_CONTIGUOUS'] is True
开发者ID:Theano,项目名称:libgpuarray,代码行数:81,代码来源:test_collectives.py

示例14: test_empty_no_params

def test_empty_no_params():
    try:
        gpu_ndarray.empty()
        assert False
    except TypeError:
        pass
开发者ID:MaxBareiss,项目名称:libgpuarray,代码行数:6,代码来源:test_gpu_ndarray.py

示例15: test_empty_no_dtype

def test_empty_no_dtype():
    x = gpu_ndarray.empty((), context=ctx)# no dtype and order param
    y = numpy.empty(())
    check_meta(x, y)
开发者ID:MaxBareiss,项目名称:libgpuarray,代码行数:4,代码来源:test_gpu_ndarray.py


注:本文中的pygpu.gpuarray.empty函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。