当前位置: 首页>>代码示例>>Python>>正文


Python libfann.training_data函数代码示例

本文整理汇总了Python中pyfann.libfann.training_data函数的典型用法代码示例。如果您正苦于以下问题:Python training_data函数的具体用法?Python training_data怎么用?Python training_data使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了training_data函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test

    def test(self, ann_file, test_file):
        """Test an artificial neural network."""
        if not os.path.isfile(ann_file):
            raise IOError("Cannot open %s (no such file)" % ann_file)
        if not os.path.isfile(test_file):
            raise IOError("Cannot open %s (no such file)" % test_file)

        # Get the prefix for the classification columns.
        try:
            dependent_prefix = self.config.data.dependent_prefix
        except:
            dependent_prefix = OUTPUT_PREFIX

        self.ann = libfann.neural_net()
        self.ann.create_from_file(ann_file)

        self.test_data = TrainData()
        try:
            self.test_data.read_from_file(test_file, dependent_prefix)
        except IOError as e:
            logging.error("Failed to process the test data: %s" % e)
            exit(1)

        logging.info("Testing the neural network...")
        fann_test_data = libfann.training_data()
        fann_test_data.set_train_data(self.test_data.get_input(),
            self.test_data.get_output())

        self.ann.test_data(fann_test_data)

        mse = self.ann.get_MSE()
        logging.info("Mean Square Error on test data: %f" % mse)
开发者ID:xieyanfu,项目名称:nbclassify,代码行数:32,代码来源:training.py

示例2: main

def main():
    # setting the prediction parameters 
    known_days = 7
    predict_days = 1
    verify_days = 30

    # setting up the parameters of the network
    connection_rate = 1
    learning_rate = 0.1
    num_input = known_days * 2
    num_hidden = 60
    num_output = predict_days
    
    # setting up the parameters of the network, continued
    desired_error = 0.000040
    max_iterations = 10000
    iteration_between_reports = 100

    # setting up the network
    net = libfann.neural_net()
    net.create_sparse_array(connection_rate, (num_input, num_hidden, num_output))
    net.set_learning_rate(learning_rate)
    net.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)

    # read the input file and format data
    fin = open("cw3.in")
    lines = fin.readlines()
    fin.close()
    rawdata = list(map(float, lines))[-1000:]
    datain0 = rawdata[0::2]
    datain1 = rawdata[1::2]
    n0 = max(datain0) * 1.4
    n1 = max(datain1) * 1.4
    datain0 = list(map(lambda x: x / n0, datain0))
    datain1 = list(map(lambda x: x / n1, datain1))

    # train the network
    data = libfann.training_data()
    drange = range(len(datain0) - known_days - verify_days)
    data.set_train_data(
        map(lambda x: datain0[x:][:known_days] + datain1[x:][:known_days], drange),
        map(lambda x: datain0[x + known_days:][:predict_days], drange)
        )
    net.train_on_data(data, max_iterations, iteration_between_reports, desired_error)

    # 
    result = []
    for i in range(verify_days):
        dtest = datain0[-known_days - verify_days + i:][:known_days] + datain1[-known_days - verify_days + i:][:known_days]
        result += [net.run(dtest)[0] * n0]
    plot.plot(list(map(lambda x: x * n0, datain0[-verify_days: -verify_days])) + result, "r")
    plot.plot(map(lambda x: x * n0, datain0[-verify_days:]), "b")
    #plot.plot(list(map(lambda x: x * n0, datain0[-verify_days * 2: -verify_days])) + result, "r")
    #plot.plot(map(lambda x: x * n0, datain0[-verify_days * 2:]), "b")
    plot.show()

#    net.train_on_file("cw3.in", max_iterations, iteration_between_reports, desired_error)
    #print(net.run([1,1]))
    print("hehe")
    return
开发者ID:starrify,项目名称:CW2013,代码行数:60,代码来源:2013AI_cw3.py

示例3: train

    def train(self, inputs, outputs, params):
        self.p = inputs.shape[1]       #number of input features
        self.n_r = outputs.shape[1]    #size of output grid in rows
        self.n_c = outputs.shape[2]    #size of output grid in cols

        self.out_min = outputs.min()
        self.out_max = outputs.max()

        d = self.out_max - self.out_min
        self.out_min -= d / 98
        self.out_max -= d / 98

        outputs = (outputs - self.out_min) / (self.out_max - self.out_min)

        assert inputs.shape[0] == outputs.shape[0]

        nn = libfann.neural_net()
        #nn.create_standard_array((self.p, 50, 50, self.n_r*self.n_c))
        nn.create_shortcut_array((self.p, self.n_r*self.n_c))
        nn.set_learning_rate(.7)
        nn.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC)
        nn.set_activation_function_output(libfann.SIGMOID)

        data = libfann.training_data()
        data.set_train_data(inputs, outputs.reshape((-1, self.n_r*self.n_c)))

        #nn.train_on_data(data, 500, 10, .001)
        nn.cascadetrain_on_data(data, 15, 1, .001)

        nn.save('nn.net')
        nn.destroy()
开发者ID:bhumbers,项目名称:745approx,代码行数:31,代码来源:neural_approx.py

示例4: __init__

    def __init__(self,
                 datafile,
                 desired_error = 0.0000000001,
                 iterations_between_reports = 1000):
        self.datafile = datafile
        self.desired_error = desired_error
        self.iterations_between_reports  = iterations_between_reports
        f = open(datafile+".train", 'r')
        firstline = f.readline()
        f.close
        l = string.split(firstline)
        self.num_input = int(l[1])
        self.num_output = int(l[2])
        self.breeding = False
        self.stage = 0
        self.netsTried = 0
        self.maxMutations = 18
        self.populationSize = 12
        self.trainingData = libfann.training_data()
        self.trainingData.read_train_from_file(datafile+".train")
        self.testData = libfann.training_data()
        self.testData.read_train_from_file(datafile+".test")
        self.flist = [libfann.FANN_LINEAR,libfann.FANN_SIGMOID,libfann.FANN_SIGMOID_STEPWISE,libfann.FANN_SIGMOID_SYMMETRIC,libfann.FANN_SIGMOID_SYMMETRIC_STEPWISE,
                      libfann.FANN_GAUSSIAN,libfann.FANN_GAUSSIAN_SYMMETRIC,libfann.FANN_ELLIOT,libfann.FANN_ELLIOT_SYMMETRIC,libfann.FANN_LINEAR_PIECE,
                      libfann.FANN_LINEAR_PIECE_SYMMETRIC,libfann.FANN_SIN_SYMMETRIC,libfann.FANN_COS_SYMMETRIC]
        self.mutationlist = ["change_connection_rate",
                        "change_learning_rate",
                        "change_num_neurons_hidden",
                        "change_num_layers_hidden",
                        "change_max_iterations",
                        "change_training_algorithm",
                        "change_activation_function_hidden",
                        "change_activation_function_output",
                        "change_learning_momentum",
                        "change_activation_steepness_hidden",
                        "change_activation_steepness_output",
                        "change_training_param"]
        self.trmutlist = ["change_connection_type",
                          "change_quickprop_decay",
                          "change_quickprop_mu",
                          "change_rprop_increase_factor",
                          "change_rprop_decrease_factor",
                          "change_rprop_delta_min",
                          "change_rprop_delta_max",
#                          "change_rprop_delta_zero"
                           ]
开发者ID:Buggaboo,项目名称:Triathlon,代码行数:46,代码来源:Triathlon-Breeder.py

示例5: testNet

def testNet():
    data = libfann.training_data()
    data.read_train_from_file(test_file);

    ann = libfann.neural_net()
    ann.create_from_file(nn_file)

    ann.reset_MSE()
    ann.test_data(data)
    print("Mean square error: {0}".format(ann.get_MSE()));
开发者ID:jeffames-cs,项目名称:nnot,代码行数:10,代码来源:ann.py

示例6: load_data_prefix

def load_data_prefix(prefix):
	inp = numpy.loadtxt(prefix + "_i.txt")
	inp = check_matrix(inp)
	out = numpy.loadtxt(prefix + "_o.txt")
	out = check_matrix(out)

	data = fann.training_data()
	data.set_train_data(inp,out)

	return data
开发者ID:Verderey,项目名称:Classification_Attemption,代码行数:10,代码来源:demo_1.py

示例7: load_data

def load_data(filename, in_outs):
	a = numpy.loadtxt(filename)
	inp = numpy.compress(numpy.ones(in_outs[0]), a, axis=1)
	inp = check_matrix(inp)
	out = numpy.compress(numpy.concatenate([numpy.zeros(in_outs[0]), numpy.ones(in_outs[1])]), a, axis=1)
	out = check_matrix(out)

	data = fann.training_data()
	data.set_train_data(inp,out)

	return data
开发者ID:Verderey,项目名称:Classification_Attemption,代码行数:11,代码来源:demo_1.py

示例8: test

    def test(self):
        print "Creating network."
        train_data = libfann.training_data()
        train_data.read_train_from_file(tfile)
        ann = libfann.neural_net()
        ann.create_sparse_array(
            connection_rate, (len(train_data.get_input()[0]), num_neurons_hidden, len(train_data.get_output()[0]))
        )
        ann.set_learning_rate(learning_rate)
        ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)
        ann.set_activation_function_output(libfann.SIGMOID_STEPWISE)
        ann.set_training_algorithm(libfann.TRAIN_INCREMENTAL)
        ann.train_on_data(train_data, max_iterations, iterations_between_reports, desired_error)

        print "Testing network"
        test_data = libfann.training_data()
        test_data.read_train_from_file(test_file)
        ann.reset_MSE()
        ann.test_data(test_data)
        print "MSE error on test data: %f" % ann.get_MSE()
开发者ID:psiddarth,项目名称:Neuron,代码行数:20,代码来源:test.py

示例9: load_data

    def load_data(self, data_file,val_file=None):
        # create training data, and ann object
        print "Loading data"
        self.train_data = libfann.training_data()
        self.train_data.read_train_from_file(data_file)
        self.dim_input=self.train_data.num_input_train_data()
        self.dim_output=self.train_data.num_output_train_data()

        input=self.train_data.get_input()
        target=self.train_data.get_output()
        
        data_lo_hi=[0,0]
        for i in range(len(input)):
            if target[i][0]<0.5:
               data_lo_hi[0]+=1 
            elif target[i][0]>0.5:
               data_lo_hi[1]+=1
        
        print "\t Train data is %d low and %d high" % tuple(data_lo_hi)

        
        if (val_file and os.path.exists(val_file)):
            print "Loading validation data"
            self.do_validation=True
            self.val_data=libfann.training_data()
            self.val_data.read_train_from_file(val_file)
            input=self.val_data.get_input()
            target=self.val_data.get_output()
            data_lo_hi=[0,0]
            for i in range(len(input)):
                if target[i][0]<0.5:
                   data_lo_hi[0]+=1 
                elif target[i][0]>0.5:
                   data_lo_hi[1]+=1
            print "\t Validation data is %d low and %d high" % tuple(data_lo_hi)
        else:
            self.val_data=self.train_data
            self.do_validation=False
开发者ID:DontLookAtMe,项目名称:fann-mrnn,代码行数:38,代码来源:fann_trainer.py

示例10: mainLoop

def mainLoop():
    n_iter = 0
    last_save = 0
    min_test_MSE = 1.0
    max_iters_after_save = 50
    
    try:
        while True:
            n_iter += 1
            print "Iteration: %5d " % (n_iter),
            seg_copy = map(lambda (c, seg): (c, cv.CloneImage(seg)), segments)
            seg_copy = map(lambda (c, seg): (c, spoil(seg)), seg_copy)
            shuffle(seg_copy)
            
            f = open(train_file, "w")
            f.write("%d %d %d\n" % (len(segments), num_input, num_output))
        
            for c, image in seg_copy:
                image = adjustSize(image, (segW, segH))
                for y in range(image.height):
                    for x in range(image.width):
                        n = image[y, x] / 159.375 - 0.8
                        f.write("%f " % n)
                f.write("\n")
                n = charset.index(c)
                f.write("-1 " * n + "1" + " -1" * (num_output - n - 1) + "\n")
        
            f.close()
            
            train = libfann.training_data()
            train.read_train_from_file(train_file)
            ann.train_epoch(train)
            train.destroy_train()
            print "Train MSE: %f " % (ann.get_MSE()),
            print "Train bit fail: %5d " % (ann.get_bit_fail()),
            ann.test_data(test)
            mse = ann.get_MSE()
            print "Test MSE: %f " % (mse),
            print "Test bit fail: %5d " % (ann.get_bit_fail()),
            if mse < min_test_MSE:
                min_test_MSE = mse
                ann.save(ann_file)
                last_save = n_iter
                print "saved",
            if n_iter - last_save > max_iters_after_save: break
            print
    except KeyboardInterrupt: print "Interrupted by user."
开发者ID:woto,项目名称:EPC,代码行数:47,代码来源:train.py

示例11: train_my_net

def train_my_net(data_file, net=None):

    desired_error = 0.01
    max_iter = 100000
    report_time = 100

    if net is None:
        network = new_net()
    else:
        network = net

    data = libfann.training_data()
    data.read_train_from_file(data_file)

    network.train_on_data(data, max_iter, report_time, desired_error)

    return network
开发者ID:the-mandarine,项目名称:esiea-school-projects,代码行数:17,代码来源:test_cancer_valid.py

示例12: initNet

def initNet():
    learning_rate = 0.3
    num_neurons_hidden = num_input / 3
    
    #desired_error = 0.015
    #max_iterations = 10000
    #iterations_between_reports = 10
    
    global ann
    ann = libfann.neural_net()
    ann.create_standard_array((num_input, num_neurons_hidden, num_output))
    ann.set_learning_rate(learning_rate)
    ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)
    ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)

    train = libfann.training_data()
    train.read_train_from_file(train_file)
    ann.init_weights(train)
    train.destroy_train()
开发者ID:woto,项目名称:EPC,代码行数:19,代码来源:train.py

示例13: TestOnData

def TestOnData(nn, testdata):
    ann = libfann.neural_net()
    ann.create_from_file(nn)
    
    testData = libfann.training_data()
    testData.read_train_from_file(testdata)
    ann.reset_MSE()

    if args.full:
        inputs = testData.get_input()
        outputs = testData.get_output()

        missed_goodbuys = 0
        missed_badbuys = 0
        correct_goodbuys = 0
        correct_badbuys = 0

        print "#Row\tCorrect\tCalc\tFail"

        for i in xrange(len(inputs)):
            nn_out = ann.run(inputs[i])[0]
            c_out = outputs[i][0]
            s = ' '
            if c_out == 1.0 and nn_out < 0.8:
                s = 'B'
                missed_badbuys += 1
            if c_out == 0.0 and nn_out >= 0.8:
                s = 'G'
                missed_goodbuys += 1
            if c_out == 1.0 and nn_out >= 0.8:
                correct_badbuys += 1
            if c_out == 0.0 and nn_out < 0.8:
                correct_goodbuys += 1
            
            print "%5u\t%1.3f\t%1.3f\t%s" % (i+1, outputs[i][0], ann.run(inputs[i])[0], s)
        print "Missed %u bad buys of %u (%2.1f%%)" % (missed_badbuys, correct_badbuys+missed_badbuys,
                                                    float(missed_badbuys)/(correct_badbuys+missed_badbuys)*100)
        print "Missed %u good buys of %u (%2.1f%%)" % (missed_goodbuys, correct_goodbuys+missed_goodbuys,
                                                     float(missed_goodbuys)/(correct_goodbuys+missed_goodbuys)*100)
    else:
        ann.test_data(testData)
        print "Bit Fail: " + str(ann.get_bit_fail())
        print "Mean Squared Error: " + str(ann.get_MSE())
开发者ID:malthejorgensen,项目名称:DontGetKicked,代码行数:43,代码来源:train.py

示例14: XY_to_fann_train_data

def XY_to_fann_train_data(X, Y):
    if len(X) != len(Y):
        raise ValueError("X and Y must have the same number of lines.")

    train_data = libfann.training_data()

    if len(X):
        dim_X, dim_Y = len(X[0]), len(Y[0])

        tmp = tempfile.NamedTemporaryFile(delete=False)
        with tmp:
            tmp.write("%d %d %d\n"%(len(X), dim_X,  dim_Y))
            for i in xrange(len(X)):
                for line in [ X[i], Y[i] ]:
                    tmp.write("%s\n"% ' '.join( str(float(val)) for val in line ))

        train_data.read_train_from_file(tmp.name)
        tmp.unlink(tmp.name)

    return train_data
开发者ID:jmoudrik,项目名称:orange-hacks,代码行数:20,代码来源:fann_neural.py

示例15: __init__

    def __init__(self,xdat,ydat,idxs):
        if shape(xdat)[0] != shape(ydat)[0]:
            raise Exception('dimension mismatch b/w x, y')

        nt = len(xdat)
        
        ny = shape(ydat)[1]
        nx = shape(xdat)[1]

        num_input = nx;
        num_output = ny;
        num_layers = 3;
        num_neurons_hidden = 3;
        desired_error =  0.2;
        max_epochs =2000;
        epochs_between_reports = 1000;

        net = fann.neural_net()
        net.create_standard_array([num_layers, num_input, num_neurons_hidden, num_output]);

        net.set_activation_function_hidden( fann.SIGMOID_SYMMETRIC);
        net.set_activation_function_output( fann.SIGMOID_SYMMETRIC);
        
        t = fann.training_data()
        
        t.set_train_data(xdat,ydat)
        nt = net.train_on_data(t,max_epochs,epochs_between_reports,desired_error)
        out = net.save( "xor_float.net");

        print net.get_training_algorithm()
        raise Exception()

        fann.train_on_file( "xor.data", max_epochs, epochs_between_reports, desired_error);

        out = net.save( "xor_float.net");
        
        net.destroy();
开发者ID:bh0085,项目名称:compbio,代码行数:37,代码来源:backup_gagd.py


注:本文中的pyfann.libfann.training_data函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。