当前位置: 首页>>代码示例>>Python>>正文


Python pyemd.emd函数代码示例

本文整理汇总了Python中pyemd.emd函数的典型用法代码示例。如果您正苦于以下问题:Python emd函数的具体用法?Python emd怎么用?Python emd使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了emd函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_error_different_signature_lengths

 def test_error_different_signature_lengths(self):
     first_signature = np.array([6.0, 1.0, 9.0])
     second_signature = np.array([1.0, 7.0])
     distance_matrix = np.array([[0.0, 1.0],
                                 [1.0, 0.0]])
     with self.assertRaises(ValueError):
         emd(first_signature, second_signature, distance_matrix)
开发者ID:albertoHdzE,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py

示例2: test_emd_validate_larger_signatures_1

def test_emd_validate_larger_signatures_1():
    first_signature = np.array([0.0, 1.0, 2.0])
    second_signature = np.array([5.0, 3.0, 3.0])
    distance_matrix = np.array([[0.0, 0.5],
                                [0.5, 0.0]])
    with pytest.raises(ValueError):
        emd(first_signature, second_signature, distance_matrix)
开发者ID:wmayner,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py

示例3: test_error_wrong_distance_matrix_ndim

 def test_error_wrong_distance_matrix_ndim(self):
     first_signature = np.array([6.0, 1.0])
     second_signature = np.array([1.0, 7.0])
     distance_matrix = np.array([[[0.0, 1.0],
                                 [1.0, 0.0]]])
     with self.assertRaises(ValueError):
         emd(first_signature, second_signature, distance_matrix)
开发者ID:albertoHdzE,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py

示例4: test_symmetric_distance_matrix

def test_symmetric_distance_matrix():
    first_signature = np.array([0.0, 1.0])
    second_signature = np.array([5.0, 3.0])
    distance_matrix = np.array([[0.0, 0.5, 3.0],
                                [0.5, 0.0]])
    with pytest.raises(ValueError):
        emd(first_signature, second_signature, distance_matrix)
开发者ID:rlouf,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py

示例5: test_emd_validate_different_signature_dims

def test_emd_validate_different_signature_dims():
    first_signature = np.array([0.0, 1.0])
    second_signature = np.array([5.0, 3.0, 3.0])
    distance_matrix = np.array([[0.0, 0.5, 0.0],
                                [0.5, 0.0, 0.0],
                                [0.5, 0.0, 0.0]])
    with pytest.raises(ValueError):
        emd(first_signature, second_signature, distance_matrix)
开发者ID:wmayner,项目名称:pyemd,代码行数:8,代码来源:test_pyemd.py

示例6: wordMoverDistance

def wordMoverDistance(d1, d2):
    ###d1 list
    ###d2 list
    # Rule out words that not in vocabulary
    d1 = " ".join([w for w in d1 if w in vocab_dict])
    d2 = " ".join([w for w in d2 if w in vocab_dict])
    #print d1
    #print d2
    vect = CountVectorizer().fit([d1,d2])
    feature_names = vect.get_feature_names()
    W_ = W[[vocab_dict[w] for w in vect.get_feature_names()]] #Word Matrix
    D_ = euclidean_distances(W_) # Distance Matrix
    D_ = D_.astype(np.double)
    #D_ /= D_.max()  # Normalize for comparison
    v_1, v_2 = vect.transform([d1, d2])
    v_1 = v_1.toarray().ravel()
    v_2 = v_2.toarray().ravel()
    ### EMD
    v_1 = v_1.astype(np.double)
    v_2 = v_2.astype(np.double)
    v_1 /= v_1.sum()
    v_2 /= v_2.sum()
    #print("d(doc_1, doc_2) = {:.2f}".format(emd(v_1, v_2, D_)))
    emd_d = emd(v_1, v_2, D_) ## WMD
    #print emd_d
    return emd_d
开发者ID:pkumusic,项目名称:HCE,代码行数:26,代码来源:loadWordEmbedding.py

示例7: score_word2vec_wmd

def score_word2vec_wmd(src, dst, wv):
	b1 = []
	b2 = []
	lines = 0
	with open(src) as p:
		for i, line in enumerate(p):
			s = line.split('\t')
			b1.append(s[0])
			b2.append(s[1][:-1]) #remove \n
			lines = i + 1

	vectorizer = CountVectorizer()
	vectors=vectorizer.fit_transform(b1 + b2)
	common = [word for word in vectorizer.get_feature_names() if word in wv]
	W_common = [wv[w] for w in common]
	vectorizer = CountVectorizer(vocabulary=common, dtype=np.double)
	b1_v = vectorizer.transform(b1)
	b2_v = vectorizer.transform(b2)

	D_ = sklearn.metrics.euclidean_distances(W_common)
	D_ = D_.astype(np.double)
	D_ /= D_.max()

	b1_vecs = b1_v.toarray()
	b2_vecs = b1_v.toarray()
	b1_vecs /= b1_v.sum()
	b2_vecs /= b2_v.sum()
	b1_vecs = b1_vecs.astype(np.double)
	b2_vecs = b2_vecs.astype(np.double)

	res = [round(emd(b1_vecs[i], b2_vecs[i], D_),2) for i in range(lines)]
	
	with open(dst, 'w') as thefile:
		thefile.write("\n".join(str(i) for i in res))
	print src + ' finished!'
开发者ID:wintor12,项目名称:SemEval2015,代码行数:35,代码来源:run.py

示例8: calc_wmd

def calc_wmd(d1, d2, dm, vob_index_dict):

    u1 = set(d1)
    u2 = set(d2)
    du = u1.union(u2)

    f1 = np.array(nBOW(d1, du))
    f2 = np.array(nBOW(d2, du))


    dul = len(du)
    dum = np.zeros((dul, dul), dtype=np.float)
    du_list = list(du)
    processed_list = []
    for i, t1 in enumerate(du_list):
        processed_list.append(i)

        for j, t2 in enumerate(du_list):
            if j in processed_list:
                continue

            dist_matrix_x = vob_index_dict[t1]
            dist_matrix_y = vob_index_dict[t2]
            dist = dm[dist_matrix_x, dist_matrix_y]

            dum[i][j] = dist
            dum[j][i] = dist

    return emd(f1, f2, dum)
开发者ID:zjc-enigma,项目名称:ml,代码行数:29,代码来源:calc_wmd_dist_matrix.py

示例9: test_emd_1

def test_emd_1():
    first_signature = np.array([0.0, 1.0])
    second_signature = np.array([5.0, 3.0])
    distance_matrix = np.array([[0.0, 0.5],
                                [0.5, 0.0]])
    emd_assert(
        emd(first_signature, second_signature, distance_matrix),
        3.5
    )
开发者ID:wmayner,项目名称:pyemd,代码行数:9,代码来源:test_pyemd.py

示例10: test_emd_3

def test_emd_3():
    first_signature = np.array([6.0, 1.0])
    second_signature = np.array([1.0, 7.0])
    distance_matrix = np.array([[0.0, 0.0],
                                [0.0, 0.0]])
    emd_assert(
        emd(first_signature, second_signature, distance_matrix),
        0.0
    )
开发者ID:wmayner,项目名称:pyemd,代码行数:9,代码来源:test_pyemd.py

示例11: _wh_ne_distance

    def _wh_ne_distance(self, other, w):
        c1 = getattr(self, w)
        c2 = getattr(other, w)
        
        if not len(c1) or not len(c2):
            # one of them has nothing to compare; distance is np.nan
            return np.nan

        s1 = sorted(c1.keys(), key=lambda k: c1[k], reverse=True)
        s2 = sorted(c2.keys(), key=lambda k: c2[k], reverse=True)

        if self.max_nes > 0:
            penalty = max(
                sum(
                    c1[w] 
                    for w in s1[self.max_nes:]
                ), sum(
                    c2[w]
                    for w in s2[self.max_nes:]
                )
            )

            s1 = s1[:self.max_nes]
            s2 = s2[:self.max_nes]
        else:
            penalty = 0

        # penalty will make up for those documents that have low-scoring
        # NEs, meaning they should not be compared with other news items
        # since this method would not have meaning with them

        matrix, nes = NE.matrix(set(s1).union(set(s2)))
        
        if not nes:
            # Not a single NE to compare; distance is np.nan
            return np.nan
        
        nes = [ne.lower() for ne in nes] # NE.matrix returns Titles
        v1 = np.array([ c1[ne] for ne in nes ])
        v2 = np.array([ c2[ne] for ne in nes ])

        # Make it sum 1
        s = v1.sum()
        if s > 0:
            v1 /= s

        s = v2.sum()
        if s > 0:
            v2 /= s

        # Now compute emd of the two vectors.
        # That distance is in [0, 1]
        # By multiplying per (1 - penalty) and adding penalty,
        # you ensure distance is in [penalty, 1],
        # penalty being the maximum uncertainty there is in each of the vectors.
        return (1 - penalty) * emd(v1, v2, matrix) + penalty
开发者ID:aparafita,项目名称:news-similarity,代码行数:56,代码来源:breakable_entry.py

示例12: dist_hist

def dist_hist(X,Y,distance_matrices) :
    start=0
    size=0
    l=[]
    for M in distance_matrices :
        size=M.shape[0]
        l.append(emd(X[start:(start+size)],Y[start:(start+size)],M))

        start+=size
    return np.linalg.norm(l)
开发者ID:mlmerile,项目名称:RainDataProject,代码行数:10,代码来源:histogram_util.py

示例13: hamming_emd

def hamming_emd(d1, d2):
    """Return the Earth Mover's Distance between two distributions (indexed
    by state, one dimension per node).

    Singleton dimensions are sqeezed out.
    """
    d1, d2 = d1.squeeze(), d2.squeeze()
    # Compute the EMD with Hamming distance between states as the
    # transportation cost function.
    return emd(d1.ravel(), d2.ravel(), _hamming_matrix(d1.ndim))
开发者ID:roijo,项目名称:pyphi,代码行数:10,代码来源:utils.py

示例14: hamming_emd

def hamming_emd(d1, d2):
    """Return the Earth Mover's Distance between two distributions (indexed
    by state, one dimension per node) using the Hamming distance between states
    as the transportation cost function.

    Singleton dimensions are sqeezed out.
    """
    N = d1.squeeze().ndim
    d1, d2 = flatten(d1), flatten(d2)
    return emd(d1, d2, _hamming_matrix(N))
开发者ID:wmayner,项目名称:pyphi,代码行数:10,代码来源:distance.py

示例15: dist_hist_withoutnullhist

def dist_hist_withoutnullhist(X,Y,distance_matrices) :
    start=0
    size=0
    l=[]
    for M in distance_matrices :
        size=M.shape[0]
        if sum(X[start:(start+size)]) != 0.0 and sum(Y[start:(start+size)]) != 0.0 :
            l.append(emd(X[start:(start+size)],Y[start:(start+size)],M))
        start+=size
    return np.linalg.norm(l)
开发者ID:mlmerile,项目名称:RainDataProject,代码行数:10,代码来源:histogram_util.py


注:本文中的pyemd.emd函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。