当前位置: 首页>>代码示例>>Python>>正文


Python filters.Filter类代码示例

本文整理汇总了Python中pydruid.utils.filters.Filter的典型用法代码示例。如果您正苦于以下问题:Python Filter类的具体用法?Python Filter怎么用?Python Filter使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Filter类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: query_filters

 def query_filters(self):
     args = self.form_data
     # Building filters
     filters = None
     for i in range(1, 10):
         col = args.get("flt_col_" + str(i))
         op = args.get("flt_op_" + str(i))
         eq = args.get("flt_eq_" + str(i))
         if col and op and eq:
             cond = None
             if op == '==':
                 cond = Dimension(col)==eq
             elif op == '!=':
                 cond = ~(Dimension(col)==eq)
             elif op in ('in', 'not in'):
                 fields = []
                 splitted = eq.split(',')
                 if len(splitted) > 1:
                     for s in eq.split(','):
                         s = s.strip()
                         fields.append(Filter.build_filter(Dimension(col)==s))
                     cond = Filter(type="or", fields=fields)
                 else:
                     cond = Dimension(col)==eq
                 if op == 'not in':
                     cond = ~cond
             if filters:
                 filters = Filter(type="and", fields=[
                     Filter.build_filter(cond),
                     Filter.build_filter(filters)
                 ])
             else:
                 filters = cond
     return filters
开发者ID:syvineckruyk,项目名称:panoramix,代码行数:34,代码来源:viz.py

示例2: bake_query

    def bake_query(self):
        """
        Doing a 2 phase query where we limit the number of series.
        """
        client = utils.get_pydruid_client()
        qry = self.query_obj()
        orig_filter = qry['filter'] if 'filter' in qry else ''
        qry['granularity'] = "all"
        client.groupby(**qry)
        df = client.export_pandas()
        if not df is None:
            dims =  qry['dimensions']
            filters = []
            for index, row in df.iterrows():
                fields = []
                for dim in dims:
                    f = Filter.build_filter(Dimension(dim) == row[dim])
                    fields.append(f)
                if len(fields) > 1:
                    filters.append(Filter.build_filter(Filter(type="and", fields=fields)))
                elif fields:
                    filters.append(fields[0])

            qry = self.query_obj()
            if filters:
                ff = Filter(type="or", fields=filters)
                if not orig_filter:
                    qry['filter'] = ff
                else:
                    qry['filter'] = Filter(type="and", fields=[
                        Filter.build_filter(ff),
                        Filter.build_filter(orig_filter)])
            del qry['limit_spec']
            client.groupby(**qry)
        return client.export_pandas()
开发者ID:syvineckruyk,项目名称:panoramix,代码行数:35,代码来源:viz.py

示例3: timeseries

    def timeseries(self, datasource, granularity, descending, intervals,
                   aggregations, context, filter):
        f = Filter.build_filter(filter)
        if f['type'] == 'and' and f['fields'][0]['type'] == 'selector' and \
           f['fields'][0]['dimension'] == 'agent_id' and \
           f['fields'][1]['type'] == 'selector' and \
           f['fields'][1]['dimension'] == 'process_name':
            # agent_id = f['fields'][0]['value']
            # process_name = f['fields'][1]['value']

            (interval_start, interval_end) = \
                parsers.interval(intervals)
            if interval_end is None:
                interval_end = datetime.now()

            if granularity in DruidAccessLayer.timeseries_granularities:
                query_granularity = self.__granularity_to_timedelta__(
                    granularity)
            else:
                query_granularity = parsers.duration(granularity['period'])

            body = []
            curr_time = interval_start

            while curr_time < interval_end:
                timestamp = curr_time.strftime("%Y-%m-%dT%H:%M:%S.%fZ")
                body.append({'timestamp': timestamp,
                             'result': {'cpu': random.uniform(0, 1),
                                        'mem': random.randint(1, 10000000)}})
                curr_time += query_granularity
        else:
            body = []
        return PyDruidResultMock(body)
开发者ID:silverfernsys,项目名称:agentserver,代码行数:33,代码来源:timeseries.py

示例4: build_query

    def build_query(self, query_type, args):
        """
        Build query based on given query type and arguments.

        :param string query_type: a type of query
        :param dict args: the dict of args to be sent
        :return: the resulting query
        :rtype: Query
        """
        query_dict = {'queryType': query_type}

        for key, val in six.iteritems(args):
            if key == 'aggregations':
                query_dict[key] = build_aggregators(val)
            elif key == 'post_aggregations':
                query_dict['postAggregations'] = Postaggregator.build_post_aggregators(val)
            elif key == 'datasource':
                query_dict['dataSource'] = val
            elif key == 'paging_spec':
                query_dict['pagingSpec'] = val
            elif key == 'limit_spec':
                query_dict['limitSpec'] = val
            elif key == "filter":
                query_dict[key] = Filter.build_filter(val)
            elif key == "having":
                query_dict[key] = Having.build_having(val)
            elif key == 'dimension':
                query_dict[key] = build_dimension(val)
            elif key == 'dimensions':
                query_dict[key] = [build_dimension(v) for v in val]
            else:
                query_dict[key] = val

        self.last_query = Query(query_dict, query_type)
        return self.last_query
开发者ID:psalaberria002,项目名称:pydruid,代码行数:35,代码来源:query.py

示例5: groupby

 def groupby(self, datasource, granularity, intervals, dimensions,
             filter, aggregations):
     f = Filter.build_filter(filter)
     if f['type'] == 'selector' and \
        f['dimension'] == 'agent_id' and 'value' in f:
         try:
             filename = 'groupby{0}.json'.format(f['value'])
             filepath = os.path.join(resources, filename)
             body = open(filepath).read().decode('utf-8')
         except:
             body = '[]'
     else:
         body = '[]'
     return PyDruidResultMock(body)
开发者ID:silverfernsys,项目名称:agentserver,代码行数:14,代码来源:timeseries.py

示例6: query

    def query(  # druid
            self, groupby, metrics,
            granularity,
            from_dttm, to_dttm,
            filter=None,  # noqa
            is_timeseries=True,
            timeseries_limit=None,
            row_limit=None,
            inner_from_dttm=None, inner_to_dttm=None,
            extras=None,  # noqa
            select=None,):  # noqa
        """Runs a query against Druid and returns a dataframe.

        This query interface is common to SqlAlchemy and Druid
        """
        # TODO refactor into using a TBD Query object
        qry_start_dttm = datetime.now()

        inner_from_dttm = inner_from_dttm or from_dttm
        inner_to_dttm = inner_to_dttm or to_dttm

        # add tzinfo to native datetime with config
        from_dttm = from_dttm.replace(tzinfo=config.get("DRUID_TZ"))
        to_dttm = to_dttm.replace(tzinfo=config.get("DRUID_TZ"))

        query_str = ""
        metrics_dict = {m.metric_name: m for m in self.metrics}
        all_metrics = []
        post_aggs = {}
        for metric_name in metrics:
            metric = metrics_dict[metric_name]
            if metric.metric_type != 'postagg':
                all_metrics.append(metric_name)
            else:
                conf = metric.json_obj
                fields = conf.get('fields', [])
                all_metrics += [
                    f.get('fieldName') for f in fields
                    if f.get('type') == 'fieldAccess']
                all_metrics += conf.get('fieldNames', [])
                if conf.get('type') == 'javascript':
                    post_aggs[metric_name] = JavascriptPostAggregator(
                        name=conf.get('name'),
                        field_names=conf.get('fieldNames'),
                        function=conf.get('function'))
                else:
                    post_aggs[metric_name] = Postaggregator(
                        conf.get('fn', "/"),
                        conf.get('fields', []),
                        conf.get('name', ''))
        aggregations = {
            m.metric_name: m.json_obj
            for m in self.metrics
            if m.metric_name in all_metrics
        }
        granularity = granularity or "all"
        if granularity != "all":
            granularity = utils.parse_human_timedelta(
                granularity).total_seconds() * 1000
        if not isinstance(granularity, string_types):
            granularity = {"type": "duration", "duration": granularity}
            origin = extras.get('druid_time_origin')
            if origin:
                dttm = utils.parse_human_datetime(origin)
                granularity['origin'] = dttm.isoformat()

        qry = dict(
            datasource=self.datasource_name,
            dimensions=groupby,
            aggregations=aggregations,
            granularity=granularity,
            post_aggregations=post_aggs,
            intervals=from_dttm.isoformat() + '/' + to_dttm.isoformat(),
        )
        filters = None
        for col, op, eq in filter:
            cond = None
            if op == '==':
                cond = Dimension(col) == eq
            elif op == '!=':
                cond = ~(Dimension(col) == eq)
            elif op in ('in', 'not in'):
                fields = []
                splitted = eq.split(',')
                if len(splitted) > 1:
                    for s in eq.split(','):
                        s = s.strip()
                        fields.append(Filter.build_filter(Dimension(col) == s))
                    cond = Filter(type="or", fields=fields)
                else:
                    cond = Dimension(col) == eq
                if op == 'not in':
                    cond = ~cond
            if filters:
                filters = Filter(type="and", fields=[
                    Filter.build_filter(cond),
                    Filter.build_filter(filters)
                ])
            else:
                filters = cond
#.........这里部分代码省略.........
开发者ID:cderfdsa,项目名称:caravel,代码行数:101,代码来源:models.py

示例7: query

    def query(
            self, groupby, metrics,
            granularity,
            from_dttm, to_dttm,
            limit_spec=None,
            filter=None,
            is_timeseries=True,
            timeseries_limit=None,
            row_limit=None,
            inner_from_dttm=None, inner_to_dttm=None,
            extras=None):
        qry_start_dttm = datetime.now()

        inner_from_dttm = inner_from_dttm or from_dttm
        inner_to_dttm = inner_to_dttm or to_dttm

        # add tzinfo to native datetime with config
        from_dttm = from_dttm.replace(tzinfo=config.get("DRUID_TZ"))
        to_dttm = to_dttm.replace(tzinfo=config.get("DRUID_TZ"))

        query_str = ""
        aggregations = {
            m.metric_name: m.json_obj
            for m in self.metrics if m.metric_name in metrics
        }
        if granularity != "all":
            granularity = utils.parse_human_timedelta(
                granularity).total_seconds() * 1000
        if not isinstance(granularity, basestring):
            granularity = {"type": "duration", "duration": granularity}

        qry = dict(
            datasource=self.datasource_name,
            dimensions=groupby,
            aggregations=aggregations,
            granularity=granularity,
            intervals=from_dttm.isoformat() + '/' + to_dttm.isoformat(),
        )
        filters = None
        for col, op, eq in filter:
            cond = None
            if op == '==':
                cond = Dimension(col) == eq
            elif op == '!=':
                cond = ~(Dimension(col) == eq)
            elif op in ('in', 'not in'):
                fields = []
                splitted = eq.split(',')
                if len(splitted) > 1:
                    for s in eq.split(','):
                        s = s.strip()
                        fields.append(Filter.build_filter(Dimension(col) == s))
                    cond = Filter(type="or", fields=fields)
                else:
                    cond = Dimension(col) == eq
                if op == 'not in':
                    cond = ~cond
            if filters:
                filters = Filter(type="and", fields=[
                    Filter.build_filter(cond),
                    Filter.build_filter(filters)
                ])
            else:
                filters = cond

        if filters:
            qry['filter'] = filters

        client = self.cluster.get_pydruid_client()
        orig_filters = filters
        if timeseries_limit and is_timeseries:
            # Limit on the number of timeseries, doing a two-phases query
            pre_qry = deepcopy(qry)
            pre_qry['granularity'] = "all"
            pre_qry['limit_spec'] = {
                "type": "default",
                "limit": timeseries_limit,
                'intervals': inner_from_dttm.isoformat() + '/' + inner_to_dttm.isoformat(),
                "columns": [{
                    "dimension": metrics[0] if metrics else self.metrics[0],
                    "direction": "descending",
                }],
            }
            client.groupby(**pre_qry)
            query_str += "// Two phase query\n// Phase 1\n"
            query_str += json.dumps(client.query_dict, indent=2) + "\n"
            query_str += "//\nPhase 2 (built based on phase one's results)\n"
            df = client.export_pandas()
            if df is not None and not df.empty:
                dims = qry['dimensions']
                filters = []
                for index, row in df.iterrows():
                    fields = []
                    for dim in dims:
                        f = Filter.build_filter(Dimension(dim) == row[dim])
                        fields.append(f)
                    if len(fields) > 1:
                        filt = Filter(type="and", fields=fields)
                        filters.append(Filter.build_filter(filt))
                    elif fields:
#.........这里部分代码省略.........
开发者ID:noddi,项目名称:panoramix,代码行数:101,代码来源:models.py

示例8: select

 def select(self, datasource, granularity, intervals, descending,
            dimensions, metrics, filter, paging_spec):
     f = Filter.build_filter(filter)
     print('f: %s' % f)
     body = []
     return PyDruidResultMock(body)
开发者ID:silverfernsys,项目名称:agentserver,代码行数:6,代码来源:timeseries.py


注:本文中的pydruid.utils.filters.Filter类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。