本文整理汇总了Python中pydpiper.pipeline.Pipeline类的典型用法代码示例。如果您正苦于以下问题:Python Pipeline类的具体用法?Python Pipeline怎么用?Python Pipeline使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Pipeline类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
class SetResolution:
def __init__(self, filesToResample, resolution):
"""During initialization make sure all files are resampled
at resolution we'd like to use for each pipeline stage
"""
self.p = Pipeline()
for FH in filesToResample:
dirForOutput = self.getOutputDirectory(FH)
currentRes = volumeFromFile(FH.getLastBasevol()).separations
if not abs(abs(currentRes[0]) - abs(resolution)) < 0.01:
crop = ma.autocrop(resolution, FH, defaultDir=dirForOutput)
self.p.addStage(crop)
mask = FH.getMask()
if mask:
#Need to resample the mask as well.
cropMask = ma.mincresampleMask(FH,
FH,
outputLocation=FH,
likeFile=FH)
self.p.addStage(cropMask)
def getOutputDirectory(self, FH):
"""Sets output directory based on whether or not we have a full
RegistrationPipeFH class or we are just using RegistrationFHBase"""
if isinstance(FH, rfh.RegistrationPipeFH):
outputDir = "resampled"
else:
outputDir = FH.basedir
return outputDir
示例2: resampleToCommon
def resampleToCommon(xfm, FH, statsGroup, statsKernels, nlinFH):
blurs = []
if isinstance(statsKernels, list):
blurs = statsKernels
elif isinstance(statsKernels, str):
for i in statsKernels.split(","):
blurs.append(float(i))
else:
print("Improper type of blurring kernels specified for stats calculation: " + str(statsKernels))
sys.exit()
pipeline = Pipeline()
outputDirectory = FH.statsDir
filesToResample = []
for b in blurs:
filesToResample.append(statsGroup.relativeJacobians[b])
if statsGroup.absoluteJacobians:
filesToResample.append(statsGroup.absoluteJacobians[b])
for f in filesToResample:
outputBase = removeBaseAndExtension(f).split(".mnc")[0]
outputFile = createBaseName(outputDirectory, outputBase + "_common" + ".mnc")
logFile = fh.logFromFile(FH.logDir, outputFile)
targetAndLike=nlinFH.getLastBasevol()
res = ma.mincresample(f,
targetAndLike,
likeFile=targetAndLike,
transform=xfm,
output=outputFile,
logFile=logFile,
argArray=["-sinc"])
pipeline.addStage(res)
return pipeline
示例3: maskFiles
def maskFiles(FH, isAtlas, numAtlases=1):
""" Assume that if there is more than one atlas, multiple
masks were generated and we need to perform a voxel_vote.
Otherwise, assume we are using inputLabels from crossing with
only one atlas.
"""
#MF TODO: Make this more general to handle pairwise option.
p = Pipeline()
if not isAtlas:
if numAtlases > 1:
voxel = voxelVote(FH, False, True)
p.addStage(voxel)
mincMathInput = voxel.outputFiles[0]
else:
mincMathInput = FH.returnLabels(True)[0]
FH.setMask(mincMathInput)
else:
mincMathInput = FH.getMask()
mincMathOutput = fh.createBaseName(FH.resampledDir, FH.basename)
mincMathOutput += "_masked.mnc"
logFile = fh.logFromFile(FH.logDir, mincMathOutput)
cmd = ["mincmath"] + ["-clobber"] + ["-mult"]
cmd += [InputFile(mincMathInput)] + [InputFile(FH.getLastBasevol())]
cmd += [OutputFile(mincMathOutput)]
mincMath = CmdStage(cmd)
mincMath.setLogFile(LogFile(logFile))
p.addStage(mincMath)
FH.setLastBasevol(mincMathOutput)
return(p)
示例4: __init__
class LabelAndFileResampling:
def __init__(self,
inputPipeFH,
templatePipeFH,
name="initial",
createMask=False):
self.p = Pipeline()
self.name = name
if createMask:
resampleDefault = "tmp"
labelsDefault = "tmp"
else:
resampleDefault = "resampled"
labelsDefault = "labels"
# Resample all inputLabels
inputLabelArray = templatePipeFH.returnLabels(True)
if len(inputLabelArray) > 0:
""" for the initial registration, resulting labels should be added
to inputLabels array for subsequent pairwise registration
otherwise labels should be added to labels array for voting """
if self.name == "initial":
addOutputToInputLabels = True
else:
addOutputToInputLabels = False
for i in range(len(inputLabelArray)):
"""Note: templatePipeFH and inputPipeFH have the reverse order
from how they are passed into this function. This is intentional
because the mincresample classes use the first argument as the
one from which to get the file to be resampled. Here, either the
mask or labels to be resampled come from the template."""
if createMask:
resampleStage = ma.mincresampleMask(templatePipeFH,
inputPipeFH,
defaultDir=labelsDefault,
likeFile=inputPipeFH,
argArray=["-invert"],
outputLocation=inputPipeFH,
labelIndex=i,
setInputLabels=addOutputToInputLabels)
else:
resampleStage = ma.mincresampleLabels(templatePipeFH,
inputPipeFH,
defaultDir=labelsDefault,
likeFile=inputPipeFH,
argArray=["-invert"],
outputLocation=inputPipeFH,
labelIndex=i,
setInputLabels=addOutputToInputLabels)
self.p.addStage(resampleStage)
# resample files
resampleStage = ma.mincresample(templatePipeFH,
inputPipeFH,
defaultDir=resampleDefault,
likeFile=inputPipeFH,
argArray=["-invert"],
outputLocation=inputPipeFH)
self.p.addStage(resampleStage)
示例5: getXfms
def getXfms(nlinFH, subjects, space, mbmDir, time=None):
"""For each file in the build-model registration (associated with the specified
time point), do the following:
1. Find the to-native.xfm for that file.
2. Find the matching subject at the specified time point
3. Set this xfm to be the last xfm from nlin average to subject from step #2.
4. Find the -from-native.xfm file.
5. Set this xfm to be the last xfm from subject to nlin.
Note: assume that the names in processedDir match beginning file
names for each subject
We are also assuming subjects is either a dictionary or a list.
"""
"""First handle subjects if dictionary or list"""
if isinstance(subjects, list):
inputs = subjects
elif isinstance(subjects, dict):
inputs = []
for s in subjects:
inputs.append(subjects[s][time])
else:
logger.error("getXfms only takes a dictionary or list of subjects. Incorrect type has been passed. Exiting...")
sys.exit()
pipeline = Pipeline()
baseNames = walk(mbmDir).next()[1]
for b in baseNames:
if space == "lsq6":
xfmToNative = abspath(mbmDir + "/" + b + "/transforms/" + b + "-final-to_lsq6.xfm")
elif space == "lsq12":
xfmToNative = abspath(mbmDir + "/" + b + "/transforms/" + b + "-final-nlin.xfm")
xfmFromNative = abspath(mbmDir + "/" + b + "/transforms/" + b + "_inv_nonlinear.xfm")
elif space == "native":
xfmToNative = abspath(mbmDir + "/" + b + "/transforms/" + b + "-to-native.xfm")
xfmFromNative = abspath(mbmDir + "/" + b + "/transforms/" + b + "-from-native.xfm")
else:
logger.error("getXfms can only retrieve transforms to and from native, lsq6 or lsq12 space. Invalid parameter has been passed.")
sys.exit()
for inputFH in inputs:
if fnmatch.fnmatch(inputFH.getLastBasevol(), "*" + b + "*"):
if space=="lsq6":
ix = ma.xfmInvert(xfmToNative, inputFH)
pipeline.addStage(ix)
xfmFromNative = ix.outputFiles[0]
nlinFH.setLastXfm(inputFH, xfmToNative)
inputFH.setLastXfm(nlinFH, xfmFromNative)
return pipeline
示例6: __init__
def __init__(self,
inputFH,
targetFH,
blurs=[0.3, 0.2, 0.15],
step=[1,0.5,0.333333333333333],
gradient=[False,True,False],
simplex=[3,1.5,1],
defaultDir="tmp"):
# TO DO: Might want to take this out and pass in # of generations, since
# checking happens there.
if len(blurs) == len(step) == len(simplex):
# do nothing - all lengths are the same and we're therefore happy
pass
else:
logger.error("The same number of entries are required for blurs, step, and simplex in LSQ12")
sys.exit()
self.p = Pipeline()
self.inputFH = inputFH
self.targetFH = targetFH
self.blurs = blurs
self.step = step
self.blurs = blurs
self.gradient = gradient
self.simplex = simplex
self.defaultDir = defaultDir
self.blurFiles()
self.buildPipeline()
示例7: __init__
def __init__(self,
inputArray,
targetFH,
nlinOutputDir,
avgPrefix,
nlin_protocol,
resolution=None):
self.p = Pipeline()
"""Initial inputs should be an array of fileHandlers with lastBasevol in lsq12 space"""
self.inputs = inputArray
"""Initial target should be the file handler for the lsq12 average"""
self.target = targetFH
"""Output directory should be _nlin """
self.nlinDir = nlinOutputDir
"""Prefix to pre-pend to averages at each generation"""
self.avgPrefix = avgPrefix
"""Empty array that we will fill with averages as we create them"""
self.nlinAverages = []
"""Create the blurring resolution from the file resolution"""
self.fileRes = resolution
# hack:
self.generations = 0
if (nlin_protocol==None and resolution == None):
print("\nError: NLIN module was initialized without a protocol, and without a resolution for the registrations to be run at. Please specify one of the two. Exiting\n")
sys.exit()
if (nlin_protocol and resolution):
# we should have the nlin_protocol be able to overwrite the given resolution:
self.fileRes = None
# Create new nlin group for each input prior to registration
for i in range(len(self.inputs)):
self.inputs[i].newGroup(groupName="nlin")
示例8: __init__
def __init__(self,
targetOutputDir, #Output directory for files related to initial target (often _lsq12)
inputFiles,
nlinDir,
avgPrefix, #Prefix for nlin-1.mnc, ... nlin-k.mnc
createAvg=True, #True=call mincAvg, False=targetAvg already exists
targetAvg=None, #Optional path to initial target - passing name does not guarantee existence
targetMask=None, #Optional path to mask for initial target
nlin_protocol=None,
reg_method=None):
self.p = Pipeline()
self.targetOutputDir = targetOutputDir
self.inputFiles = inputFiles
self.nlinDir = nlinDir
self.avgPrefix = avgPrefix
self.createAvg = createAvg
self.targetAvg = targetAvg
self.targetMask = targetMask
self.nlin_protocol = nlin_protocol
self.reg_method = reg_method
# setup initialTarget (if needed) and initialize non-linear module
self.setupTarget()
self.initNlinModule()
#iterate through non-linear registration and setup averages
self.nlinModule.iterate()
self.p.addPipeline(self.nlinModule.p)
self.nlinAverages = self.nlinModule.nlinAverages
self.nlinParams = self.nlinModule.nlinParams
示例9: MAGeTRegister
def MAGeTRegister(inputFH,
templateFH,
regMethod,
name="initial",
createMask=False,
lsq12_protocol=None,
nlin_protocol=None):
p = Pipeline()
if createMask:
defaultDir="tmp"
else:
defaultDir="transforms"
if regMethod == "minctracc":
sp = HierarchicalMinctracc(inputFH,
templateFH,
lsq12_protocol=lsq12_protocol,
nlin_protocol=nlin_protocol,
defaultDir=defaultDir)
p.addPipeline(sp.p)
elif regMethod == "mincANTS":
register = LSQ12ANTSNlin(inputFH,
templateFH,
lsq12_protocol=lsq12_protocol,
nlin_protocol=nlin_protocol,
defaultDir=defaultDir)
p.addPipeline(register.p)
rp = LabelAndFileResampling(inputFH, templateFH, name=name, createMask=createMask)
p.addPipeline(rp.p)
return(p)
示例10: __init__
def __init__(self,
inputPipeFH,
templatePipeFH,
blurs=[1, 0.5, 0.3]):
self.p = Pipeline()
self.inputPipeFH = inputPipeFH
self.templatePipeFH = templatePipeFH
self.blurFiles(blurs)
示例11: __init__
def __init__(self, inputs, dirs, options, avgPrefix=None, initModel=None):
self.inputs = inputs
self.dirs = dirs
self.options = options
self.avgPrefix = avgPrefix
self.initModel = initModel
self.nlinFH = None
self.p = Pipeline()
self.buildPipeline()
示例12: __init__
def __init__(self,
inFile,
targetFile,
nameForStage=None,
**kwargs):
self.p = Pipeline()
self.outputFiles = [] # this will contain the outputFiles from the mincresample of the main MINC file
self.outputFilesMask = [] # this will contain the outputFiles from the mincresample of the mask belonging to the main MINC file
# the first step is to simply run the mincresample command:
fileRS = mincresample(inFile,
targetFile,
**kwargs)
if(nameForStage):
fileRS.name = nameForStage
self.p.addStage(fileRS)
self.outputFiles = fileRS.outputFiles
# initialize the array of outputs for the mask in case there is none to be resampled
self.outputFilesMask = [None] * len(self.outputFiles)
# next up, is this a file handler, and if so is there a mask that needs to be resampled?
if(isFileHandler(inFile)):
if(inFile.getMask()):
# there is a mask associated with this file, should be updated
# we have to watch out in terms of interpolation arguments, if
# the original resample command asked for "-sinc" or "-tricubic"
# for instance, we should remove that argument for the mask resampling
# these options would reside in the argArray...
maskArgs = copy.deepcopy(kwargs)
if(maskArgs["argArray"]):
argList = maskArgs["argArray"]
for i in range(len(argList)):
if(re.match("-sinc", argList[i]) or
re.match("-trilinear", argList[i]) or
re.match("-tricubic", argList[i]) ):
del argList[i]
maskArgs["argArray"] = argList
# if the output file for the mincresample command was already
# specified, add "_mask.mnc" to it
if(maskArgs["output"]):
maskArgs["output"] = re.sub(".mnc", "_mask.mnc", maskArgs["output"])
maskRS = mincresampleMask(inFile,
targetFile,
**maskArgs)
if(nameForStage):
maskRS.name = nameForStage + "--mask--"
self.p.addStage(maskRS)
self.outputFilesMask = maskRS.outputFiles
示例13: __init__
def __init__(self, inputArray, targetFH, nlinOutputDir, nlin_protocol=None):
self.p = Pipeline()
"""Initial inputs should be an array of fileHandlers with lastBasevol in lsq12 space"""
self.inputs = inputArray
"""Initial target should be the file handler for the lsq12 average"""
self.target = targetFH
"""Output directory should be _nlin """
self.nlinDir = nlinOutputDir
"""Empty array that we will fill with averages as we create them"""
self.nlinAverages = []
"""Create the blurring resolution from the file resolution"""
try: # the attempt to access the minc volume will fail if it doesn't yet exist at pipeline creation
self.fileRes = rf.getFinestResolution(self.target)
except:
# if it indeed failed, get resolution from the original file specified for
# one of the input files, which should exist.
# Can be overwritten by the user through specifying a nonlinear protocol.
self.fileRes = rf.getFinestResolution(self.inputs[0].inputFileName)
"""
Set default parameters before checking to see if a non-linear protocol has been
specified. This is done first, since a non-linear protocol may specify only
a subset of the parameters, but all parameters must be set for the registration
to run properly.
After default parameters are set, check for a specified non-linear protocol and
override these parameters accordingly. Currently, this protocol must
be a csv file that uses a SEMI-COLON to separate the fields. Examples are:
pydpiper_apps_testing/test_data/minctracc_example_protocol.csv
pydpiper_apps_testing/test_data/mincANTS_example_protocol.csv
Each row in the csv is a different input to the either a minctracc or mincANTS call
Although the number of entries in each row (e.g. generations) is variable, the
specific parameters are fixed. For example, one could specify a subset of the
allowed parameters (e.g. blurs only) but could not rename any parameters
or use additional ones that haven't already been defined without subclassing. See
documentation for additional details.
Note that if no protocol is specified, then defaults will be used.
Based on the length of these parameter arrays, the number of generations is set.
"""
self.defaultParams()
if nlin_protocol:
self.setParams(nlin_protocol)
self.generations = self.getGenerations()
# Create new nlin group for each input prior to registration
for i in range(len(self.inputs)):
self.inputs[i].newGroup(groupName="nlin")
示例14: MAGeTMask
def MAGeTMask(atlases, inputs, numAtlases, regMethod, lsq12_protocol=None, nlin_protocol=None):
""" Masking algorithm is as follows:
1. Run HierarchicalMinctracc or mincANTS with mask=True,
using masks instead of labels.
2. Do voxel voting to find the best mask. (Or, if single atlas,
use that transform)
3. mincMath to multiply original input by mask to get _masked.mnc file
(This is done for both atlases and inputs, though for atlases, voxel
voting is not required.)
4. Replace lastBasevol with masked version, since once we have created
mask, we no longer care about unmasked version.
5. Clear out labels arrays, which were used to keep track of masks,
as we want to re-set them for actual labels.
Note: All data will be placed in a newly created masking directory
to keep it separate from data generated during actual MAGeT.
"""
p = Pipeline()
for atlasFH in atlases:
maskDirectoryStructure(atlasFH, masking=True)
for inputFH in inputs:
maskDirectoryStructure(inputFH, masking=True)
for atlasFH in atlases:
sp = MAGeTRegister(inputFH,
atlasFH,
regMethod,
name="initial",
createMask=True,
lsq12_protocol=lsq12_protocol,
nlin_protocol=nlin_protocol)
p.addPipeline(sp)
""" Prior to final masking, set log and tmp directories as they were."""
for atlasFH in atlases:
"""Retrieve labels for use in new group. Assume only one"""
labels = atlasFH.returnLabels(True)
maskDirectoryStructure(atlasFH, masking=False)
mp = maskFiles(atlasFH, True)
p.addPipeline(mp)
atlasFH.newGroup()
atlasFH.addLabels(labels[0], inputLabel=True)
for inputFH in inputs:
maskDirectoryStructure(inputFH, masking=False)
mp = maskFiles(inputFH, False, numAtlases)
p.addPipeline(mp)
# this will remove the "inputLabels"; labels that
# come directly from the atlas library
inputFH.clearLabels(True)
# this will remove the "labels"; second generation
# labels. I.e. labels from labels from the atlas library
inputFH.clearLabels(False)
inputFH.newGroup()
return(p)
示例15: maskFiles
def maskFiles(FH, isAtlas, numAtlases=1):
""" Assume that if there is more than one atlas, multiple
masks were generated and we need to perform a voxel_vote.
Otherwise, assume we are using inputLabels from crossing with
only one atlas.
"""
#MF TODO: Make this more general to handle pairwise option.
p = Pipeline()
if not isAtlas:
if numAtlases > 1:
voxel = voxelVote(FH, False, True)
p.addStage(voxel)
mincMathInput = voxel.outputFiles[0]
else:
mincMathInput = FH.returnLabels(True)[0]
FH.setMask(mincMathInput)
else:
mincMathInput = FH.getMask()
mincMathOutput = fh.createBaseName(FH.resampledDir, FH.basename)
mincMathOutput += "_masked.mnc"
logFile = fh.logFromFile(FH.logDir, mincMathOutput)
cmd = ["mincmath"] + ["-clobber"] + ["-mult"]
# In response to issue #135
# the order of the input files to mincmath matters. By default the
# first input files is used as a "like file" for the output file.
# We should make sure that the mask is not used for that, because
# it has an image range from 0 to 1; not something we want to be
# set for the masked output file
# average mask
cmd += [InputFile(FH.getLastBasevol())] + [InputFile(mincMathInput)]
cmd += [OutputFile(mincMathOutput)]
mincMath = CmdStage(cmd)
mincMath.setLogFile(LogFile(logFile))
p.addStage(mincMath)
FH.setLastBasevol(mincMathOutput)
return(p)