当前位置: 首页>>代码示例>>Python>>正文


Python coco.COCO类代码示例

本文整理汇总了Python中pycocotools.coco.COCO的典型用法代码示例。如果您正苦于以下问题:Python COCO类的具体用法?Python COCO怎么用?Python COCO使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了COCO类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: evaluate

def evaluate():
    cocoGt = COCO('annotations.json')
    cocoDt = cocoGt.loadRes('detections.json')
    cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()
开发者ID:cyberCBM,项目名称:DetectO,代码行数:7,代码来源:face_detector_accuracy.py

示例2: coco_eval

def coco_eval(ann_fn, json_fn, save_fn):
    coco = COCO(ann_fn)
    coco_res = coco.loadRes(json_fn)
    coco_evaluator = COCOEvalCap(coco, coco_res)
    # comment below line to evaluate the full validation or testing set. 
    coco_evaluator.params['image_id'] = coco_res.getImgIds()
    coco_evaluator.evaluate(save_fn)
开发者ID:qyouurcs,项目名称:seq_style,代码行数:7,代码来源:caption_nil_training_dp_eval.py

示例3: ablate

def ablate(imgIds = [], mode ='destroy', out_path="tmp", coco = coco, ct = None,  **args):
    """[ablation entry point 2.0]
    Created to accomodate background-destroying ablation. Will dispatch all
    old ablations (gaussian, blackout, & median) to gen_ablation."""

    if ct is None:
        ct = coco_text.COCO_Text(os.path.join(CD, 'COCO_Text.json'))
    if imgIds == []:
        imgIds = ct.getImgIds(imgIds=ct.train, catIds=[('legibility','legible')])
        imgIds = [imgIds[np.random.randint(0,len(imgIds))]]

    #dispatch to old ablation entry point
    if mode in ['gaussian', 'blackout', 'median']:
        return gen_ablation(imgIds, mode, ct, out_path=out_path, **args)

    #else do destroy_bg
    if coco is None:
        coco = COCO('%s/annotations/instances_%s.json'%(DATA_PATH,DATA_TYPE))
    imgs = coco.loadImgs(imgIds)
    results = []
    for idx, img in enumerate(imgs):
        print("Ablating image {}/{} with id {} ".format(idx+1, len(imgIds), img['id']))
        ori_file_name = os.path.join(CD, DATA_PATH, DATA_TYPE, img['file_name'])
        orig = io.imread(ori_file_name)

        if mode == 'destroy':
            ablt = destroy_bg(orig, img['id'], coco, **args)
        elif mode == 'median_bg':
            ablt = median_bg(orig, img['id'], coco, **args)

        out_file_name = os.path.join(CD, "..", out_path, "%s_%s"%(mode, img['file_name']))
        io.imsave(out_file_name, ablt)

        results.append((img['id'], ori_file_name, out_file_name))
    return results
开发者ID:stevenygd,项目名称:coco-text,代码行数:35,代码来源:ablation.py

示例4: main

def main(argv):
	## Parsing the command	
	in_path = ''
	out_path = ''
	ann_path = ''
	try:
		opts, args = getopt.getopt(argv,"hi:o:a:",["in=","out=","annotation="])
	except getopt.GetoptError:
		print 'test.py -i <inputfile> -o <outputfile> -a <annotationfile>'
		sys.exit(2)
	for opt, arg in opts:
		if opt == '-h':
			print 'test.py -i <inputfile> -o <outputfile> -a <annotationfile>'
			sys.exit()
		elif opt in ("-i", "--in"):
			in_path = arg
		elif opt in ("-o", "--out"):
			out_path = arg
		elif opt in ("-a", "--annotation"):
			ann_path = arg
	print('Performing evaluation using Coco Python API...')
	_COCO = COCO(ann_path)
	_cats = _COCO.loadCats(_COCO.getCatIds())
	_classes = tuple(['__background__'] + [c['name'] for c in _cats])
	_do_eval(in_path,out_path, _COCO, _classes)
开发者ID:879229395,项目名称:fast-rcnn-torch,代码行数:25,代码来源:evaluate_coco.py

示例5: language_eval

def language_eval(dataset, preds):
    import sys
    if 'coco' in dataset:
        sys.path.append("coco-caption")
        annFile = 'coco-caption/annotations/captions_val2014.json'
    else:
        sys.path.append("f30k-caption")
        annFile = 'f30k-caption/annotations/dataset_flickr30k.json'
    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap

    encoder.FLOAT_REPR = lambda o: format(o, '.3f')

    coco = COCO(annFile)
    valids = coco.getImgIds()

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print 'using %d/%d predictions' % (len(preds_filt), len(preds))
    json.dump(preds_filt, open('tmp.json', 'w')) # serialize to temporary json file. Sigh, COCO API...

    resFile = 'tmp.json'
    cocoRes = coco.loadRes(resFile)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score

    return out
开发者ID:ruotianluo,项目名称:neuraltalk2-tensorflow,代码行数:33,代码来源:eval_utils.py

示例6: __init__

 def __init__(self, annotation_file=None):
     """
     Constructor of SALICON helper class for reading and visualizing annotations.
     :param annotation_file (str): location of annotation file
     :return:
     """
     COCO.__init__(self,annotation_file=annotation_file)
开发者ID:caomw,项目名称:salicon-api,代码行数:7,代码来源:salicon.py

示例7: language_eval

def language_eval(input_data, savedir, split):
  if type(input_data) == str: # Filename given.
    checkpoint = json.load(open(input_data, 'r'))
    preds = checkpoint
  elif type(input_data) == list: # Direct predictions give.
    preds = input_data

  annFile = 'third_party/coco-caption/annotations/captions_val2014.json'
  coco = COCO(annFile)
  valids = coco.getImgIds()

  # Filter results to only those in MSCOCO validation set (will be about a third)
  preds_filt = [p for p in preds if p['image_id'] in valids]
  print 'Using %d/%d predictions' % (len(preds_filt), len(preds))
  resFile = osp.join(savedir, 'result_%s.json' % (split))
  json.dump(preds_filt, open(resFile, 'w')) # Serialize to temporary json file. Sigh, COCO API...

  cocoRes = coco.loadRes(resFile)
  cocoEval = COCOEvalCap(coco, cocoRes)
  cocoEval.params['image_id'] = cocoRes.getImgIds()
  cocoEval.evaluate()

  # Create output dictionary.
  out = {}
  for metric, score in cocoEval.eval.items():
    out[metric] = score

  # Return aggregate and per image score.
  return out, cocoEval.evalImgs
开发者ID:reem94,项目名称:convcap,代码行数:29,代码来源:evaluate.py

示例8: main

def main():
    random.seed(123)

    dataDir='/home/gchrupala/repos/coco'
    dataType='val2014'
    cap = COCO('%s/annotations/captions_%s.json'%(dataDir,dataType))
    coco = COCO('%s/annotations/instances_%s.json'%(dataDir,dataType))
    imgCat = {}
    for cat,imgs in coco.catToImgs.items():
        for img in imgs:
            if img in imgCat:
                imgCat[img].add(cat)
            else:
                imgCat[img]=set([cat])

    with open('hard2.csv','w') as file:
        writer = csv.writer(file)
        writer.writerow(["desc", "url_1", "url_2", "url_3", "url_4" ])
        imgIds = random.sample(coco.getImgIds(), 1000)
        for img in coco.loadImgs(imgIds):
            if img['id'] not in imgCat:
                continue
            cats = imgCat[img['id']]
            desc = random.sample(cap.imgToAnns[img['id']],1)[0]
            imgs = coco.loadImgs(random.sample(sum([ coco.getImgIds(catIds=[cat]) 
                                                     for cat in cats ],[]),3))
            urls = [ img['coco_url'] ] + [ img['coco_url'] for img in imgs ]
            random.shuffle(urls)
            writer.writerow([desc['caption']] + urls )
开发者ID:gchrupala,项目名称:reimaginet,代码行数:29,代码来源:sample.py

示例9: coco_eval

def coco_eval(candidates_file, references_file):
  """
    Given the candidates and references, the coco-caption module is 
    used to calculate various metrics. Returns a list of dictionaries containing:
    -BLEU
    -ROUGE
    -METEOR
    -CIDEr
  """

  # This is used to suppress the output of coco-eval:
  old_stdout = sys.stdout
  sys.stdout = open(os.devnull, "w")
  try:
    # Derived from example code in coco-captions repo
    coco    = COCO( references_file )
    cocoRes = coco.loadRes( candidates_file )
  
    cocoEval = COCOEvalCap(coco, cocoRes)

    cocoEval.evaluate()
  finally:
    # Change back to standard output
    sys.stdout.close()
    sys.stdout = old_stdout
  
  return cocoEval.evalImgs
开发者ID:text-machine-lab,项目名称:MUTT,代码行数:27,代码来源:metrics.py

示例10: main

def main(argv):
    input_json = 'results/' + sys.argv[1]

    annFile = 'annotations/captions_val2014.json'
    coco = COCO(annFile)
    valids = coco.getImgIds()

    checkpoint = json.load(open(input_json, 'r'))
    preds = checkpoint['val_predictions']

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print 'using %d/%d predictions' % (len(preds_filt), len(preds))
    json.dump(preds_filt, open('tmp.json', 'w')) # serialize to temporary json file. Sigh, COCO API...

    resFile = 'tmp.json'
    cocoRes = coco.loadRes(resFile)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score
    # serialize to file, to be read from Lua
    json.dump(out, open(input_json + '_out.json', 'w'))
开发者ID:telin0411,项目名称:CS231A_Project,代码行数:27,代码来源:myeval.py

示例11: main

def main():
  HASH_IMG_NAME = True
  pylab.rcParams['figure.figsize'] = (10.0, 8.0)
  json.encoder.FLOAT_REPR = lambda o: format(o, '.3f')

  parser = argparse.ArgumentParser()
  parser.add_argument("-i", "--inputfile", type=str, required=True,
      help='File containing model-generated/hypothesis sentences.')
  parser.add_argument("-r", "--references", type=str, required=True,
      help='JSON File containing references/groundtruth sentences.')
  args = parser.parse_args()
  prediction_file = args.inputfile
  reference_file = args.references
  json_predictions_file = '{0}.json'.format(prediction_file)
  
  crf = CocoResFormat()
  crf.read_file(prediction_file, HASH_IMG_NAME)
  crf.dump_json(json_predictions_file)
   
  # create coco object and cocoRes object.
  coco = COCO(reference_file)
  cocoRes = coco.loadRes(json_predictions_file)
  
  # create cocoEval object.
  cocoEval = COCOEvalCap(coco, cocoRes)
  
  # evaluate results
  cocoEval.evaluate()
  
  # print output evaluation scores
  for metric, score in cocoEval.eval.items():
    print '%s: %.3f'%(metric, score)
开发者ID:meteora9479,项目名称:caption-eval,代码行数:32,代码来源:run_evaluations.py

示例12: __init__

    def __init__(self, root_dir, data_dir, anno_file):
        coco = COCO(os.path.join(root_dir, anno_file))
        anns = coco.loadAnns(coco.getAnnIds())

        self.coco = coco
        self.anns = anns
        self.vocab = None  # Later set from outside
        self.coco_root = root_dir
        self.coco_data = data_dir
开发者ID:Fhrozen,项目名称:chainer,代码行数:9,代码来源:datasets.py

示例13: cocoval

def cocoval(detected_json):
    eval_json = config.eval_json
    eval_gt = COCO(eval_json)

    eval_dt = eval_gt.loadRes(detected_json)
    cocoEval = COCOeval(eval_gt, eval_dt, iouType='bbox')

    # cocoEval.params.imgIds = eval_gt.getImgIds()
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()
开发者ID:Zumbalamambo,项目名称:light_head_rcnn,代码行数:11,代码来源:cocoval.py

示例14: score_generation

def score_generation(gt_filename=None, generation_result=None):

  coco_dict = read_json(generation_result)
  coco = COCO(gt_filename)
  generation_coco = coco.loadRes(generation_result)
  coco_evaluator = COCOEvalCap(coco, generation_coco)
  #coco_image_ids = [self.sg.image_path_to_id[image_path]
  #                  for image_path in self.images]
  coco_image_ids = [j['image_id'] for j in coco_dict]
  coco_evaluator.params['image_id'] = coco_image_ids
  results = coco_evaluator.evaluate(return_results=True)
  return results
开发者ID:luukhoavn,项目名称:DCC,代码行数:12,代码来源:eval_sentences.py

示例15: _load_gt_roidb

    def _load_gt_roidb(self):
        _coco = COCO(self._anno_file)
        # deal with class names
        cats = [cat['name'] for cat in _coco.loadCats(_coco.getCatIds())]
        class_to_coco_ind = dict(zip(cats, _coco.getCatIds()))
        class_to_ind = dict(zip(self.classes, range(self.num_classes)))
        coco_ind_to_class_ind = dict([(class_to_coco_ind[cls], class_to_ind[cls])
                                     for cls in self.classes[1:]])

        image_ids = _coco.getImgIds()
        gt_roidb = [self._load_annotation(_coco, coco_ind_to_class_ind, index) for index in image_ids]
        return gt_roidb
开发者ID:dpom,项目名称:incubator-mxnet,代码行数:12,代码来源:coco.py


注:本文中的pycocotools.coco.COCO类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。