本文整理汇总了Python中pyclustering.utils.timedcall函数的典型用法代码示例。如果您正苦于以下问题:Python timedcall函数的具体用法?Python timedcall怎么用?Python timedcall使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了timedcall函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: template_clustering
def template_clustering(number_clusters, path, links):
sample = read_sample(path);
clusters_centroid_link = None;
clusters_single_link = None;
clusters_complete_link = None;
clusters_average_link = None;
visualizer = cluster_visualizer(len(links));
index_canvas = 0;
if (type_link.CENTROID_LINK in links):
agglomerative_centroid_link = agglomerative(sample, number_clusters, type_link.CENTROID_LINK);
(ticks, result) = timedcall(agglomerative_centroid_link.process);
clusters_centroid_link = agglomerative_centroid_link.get_clusters();
visualizer.append_clusters(clusters_centroid_link, sample, index_canvas);
visualizer.set_canvas_title('Link: Centroid', index_canvas);
index_canvas += 1;
print("Sample: ", path, "Link: Centroid", "\tExecution time: ", ticks, "\n");
if (type_link.SINGLE_LINK in links):
agglomerative_simple_link = agglomerative(sample, number_clusters, type_link.SINGLE_LINK);
(ticks, result) = timedcall(agglomerative_simple_link.process);
clusters_single_link = agglomerative_simple_link.get_clusters();
visualizer.append_clusters(clusters_single_link, sample, index_canvas);
visualizer.set_canvas_title('Link: Single', index_canvas);
index_canvas += 1;
print("Sample: ", path, "Link: Single", "\tExecution time: ", ticks, "\n");
if (type_link.COMPLETE_LINK in links):
agglomerative_complete_link = agglomerative(sample, number_clusters, type_link.COMPLETE_LINK);
(ticks, result) = timedcall(agglomerative_complete_link.process);
clusters_complete_link = agglomerative_complete_link.get_clusters();
visualizer.append_clusters(clusters_complete_link, sample, index_canvas);
visualizer.set_canvas_title('Link: Complete', index_canvas);
index_canvas += 1;
print("Sample: ", path, "Link: Complete", "\tExecution time: ", ticks, "\n");
if (type_link.AVERAGE_LINK in links):
agglomerative_average_link = agglomerative(sample, number_clusters, type_link.AVERAGE_LINK);
(ticks, result) = timedcall(agglomerative_average_link.process);
clusters_average_link = agglomerative_average_link.get_clusters();
visualizer.append_clusters(clusters_average_link, sample, index_canvas);
visualizer.set_canvas_title('Link: Average', index_canvas);
index_canvas += 1;
print("Sample: ", path, "Link: Average", "\tExecution time: ", ticks, "\n");
visualizer.show();
示例2: clustering_random_points
def clustering_random_points(amount, ccore):
sample = [ [ random.random(), random.random() ] for _ in range(amount) ]
dbscan_instance = dbscan(sample, 0.05, 20, ccore)
(ticks, _) = timedcall(dbscan_instance.process)
print("Execution time ("+ str(amount) +" 2D-points):", ticks)
示例3: template_clustering
def template_clustering(file, map_size, trust_order, sync_order = 0.999, show_dyn = False, show_layer1 = False, show_layer2 = False, show_clusters = True):
# Read sample
sample = read_sample(file);
# Create network
network = syncsom(sample, map_size[0], map_size[1]);
# Run processing
(ticks, (dyn_time, dyn_phase)) = timedcall(network.process, trust_order, show_dyn, sync_order);
print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
# Show dynamic of the last layer.
if (show_dyn == True):
draw_dynamics(dyn_time, dyn_phase, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]);
if (show_clusters == True):
clusters = network.get_som_clusters();
draw_clusters(network.som_layer.weights, clusters);
# Show network stuff.
if (show_layer1 == True):
network.show_som_layer();
if (show_layer2 == True):
network.show_sync_layer();
if (show_clusters == True):
clusters = network.get_clusters();
draw_clusters(sample, clusters);
示例4: clustering_random_points
def clustering_random_points(amount_points, amount_centers, ccore):
sample = [ [ random.random(), random.random() ] for _ in range(amount_points) ]
centers = [ [ random.random(), random.random() ] for _ in range(amount_centers) ]
kmeans_instance = kmeans(sample, centers, 0.0001, ccore)
(ticks, _) = timedcall(kmeans_instance.process)
print("Execution time ("+ str(amount_points) +" 2D-points):", ticks)
示例5: template_clustering
def template_clustering(start_centers, path, tolerance = 0.25):
sample = read_sample(path);
kmedians_instance = kmedians(sample, start_centers, tolerance);
(ticks, result) = timedcall(kmedians_instance.process);
clusters = kmedians_instance.get_clusters();
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
draw_clusters(sample, clusters);
示例6: template_clustering
def template_clustering(number_clusters, path, branching_factor = 5, max_node_entries = 5, initial_diameter = 0.0, type_measurement = measurement_type.CENTROID_EUCLIDIAN_DISTANCE, entry_size_limit = 200, ccore = True):
sample = read_sample(path);
birch_instance = birch(sample, number_clusters, branching_factor, max_node_entries, initial_diameter, type_measurement, entry_size_limit, ccore)
(ticks, result) = timedcall(birch_instance.process);
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
clusters = birch_instance.get_clusters();
draw_clusters(sample, clusters);
示例7: template_clustering
def template_clustering(number_clusters, path, iterations, maxneighbors):
sample = read_sample(path);
clarans_instance = clarans(sample, number_clusters, iterations, maxneighbors);
(ticks, result) = timedcall(clarans_instance.process);
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
clusters = clarans_instance.get_clusters();
draw_clusters(sample, clusters);
示例8: template_clustering_performance
def template_clustering_performance(start_centers, path, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False):
sample = read_sample(path)
xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion, ccore)
(ticks, _) = timedcall(xmeans_instance.process)
criterion_string = "UNKNOWN"
if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): criterion_string = "BAYESIAN INFORMATION CRITERION";
elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): criterion_string = "MINIMUM NOISELESS DESCRIPTION_LENGTH";
print("Sample: ", ntpath.basename(path), "', Execution time: '", ticks, "',", criterion_string)
示例9: template_segmentation_image
def template_segmentation_image(source, map_som_size = [5, 5], average_neighbors = 5, sync_order = 0.998, show_dyn = False, show_som_map = False):
data = read_image(source);
network = syncsom(data, map_som_size[0], map_som_size[1]);
(ticks, (dyn_time, dyn_phase)) = timedcall(network.process, average_neighbors, show_dyn, sync_order);
print("Sample: ", source, "\t\tExecution time: ", ticks, "\t\tWinners: ", network.som_layer.get_winner_number(), "\n");
if (show_dyn is True):
draw_dynamics(dyn_time, dyn_phase);
clusters = network.get_clusters();
draw_image_mask_segments(source, clusters);
示例10: template_clustering
def template_clustering(path, radius, cluster_numbers, threshold, draw = True, ccore = True):
sample = read_sample(path);
rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore);
(ticks, result) = timedcall(rock_instance.process);
clusters = rock_instance.get_clusters();
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
if (draw == True):
draw_clusters(sample, clusters);
示例11: template_clustering
def template_clustering(file, number_clusters, arg_order = 0.999, arg_collect_dynamic = True, ccore_flag = False):
sample = read_sample(file);
network = hsyncnet(sample, number_clusters, initial_neighbors = int(len(sample) * 0.15), osc_initial_phases = initial_type.EQUIPARTITION, ccore = ccore_flag);
(ticks, analyser) = timedcall(network.process, arg_order, solve_type.FAST, arg_collect_dynamic);
print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
clusters = analyser.allocate_clusters();
if (arg_collect_dynamic == True):
sync_visualizer.show_output_dynamic(analyser);
draw_clusters(sample, clusters);
示例12: template_clustering
def template_clustering(number_clusters, path, number_represent_points = 5, compression = 0.5, draw = True, ccore_flag = False):
sample = read_sample(path);
cure_instance = cure(sample, number_clusters, number_represent_points, compression, ccore_flag);
(ticks, result) = timedcall(cure_instance.process);
clusters = cure_instance.get_clusters();
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
if (draw is True):
if (ccore_flag is True):
draw_clusters(sample, clusters);
else:
draw_clusters(None, clusters);
示例13: template_clustering
def template_clustering(start_centers, path, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False):
sample = read_sample(path);
xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion, ccore);
(ticks, result) = timedcall(xmeans_instance.process);
clusters = xmeans_instance.get_clusters();
criterion_string = "UNKNOWN";
if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): criterion_string = "BAYESIAN_INFORMATION_CRITERION";
elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): criterion_string = "MINIMUM_NOISELESS_DESCRIPTION_LENGTH";
print("Sample: ", path, "\tExecution time: ", ticks, "Number of clusters: ", len(clusters), criterion_string, "\n");
draw_clusters(sample, clusters);
示例14: template_clustering
def template_clustering(start_medoids, path, tolerance = 0.25, show = True):
sample = read_sample(path);
kmedoids_instance = kmedoids(sample, start_medoids, tolerance);
(ticks, result) = timedcall(kmedoids_instance.process);
clusters = kmedoids_instance.get_clusters();
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
if (show is True):
visualizer = cluster_visualizer(1);
visualizer.append_clusters(clusters, sample, 0);
visualizer.show();
return (sample, clusters);
示例15: template_clustering
def template_clustering(radius, neighb, path, invisible_axes = False, ccore = True):
sample = read_sample(path);
dbscan_instance = dbscan(sample, radius, neighb, ccore);
(ticks, result) = timedcall(dbscan_instance.process);
clusters = dbscan_instance.get_clusters();
noise = dbscan_instance.get_noise();
visualizer = cluster_visualizer();
visualizer.append_clusters(clusters, sample);
visualizer.append_cluster(noise, sample, marker = 'x');
visualizer.show();
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");