本文整理汇总了Python中pyclaw.util.run_app_from_main函数的典型用法代码示例。如果您正苦于以下问题:Python run_app_from_main函数的具体用法?Python run_app_from_main怎么用?Python run_app_from_main使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了run_app_from_main函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_app_from_main
# Set up controller and controller parameters
#===========================================================================
claw = pyclaw.Controller()
claw.tfinal = 2.5
claw.solution = pyclaw.Solution(state,domain)
claw.solver = solver
claw.outdir = outdir
claw.num_output_times = 10
#===========================================================================
# Solve the problem
#===========================================================================
status = claw.run()
#===========================================================================
# Plot results
#===========================================================================
if iplot: plot.interactive_plot(outdir=outdir,format=claw.output_format)
if htmlplot: plot.html_plot(outdir=outdir,format=claw.output_format)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(shallow2D)
print 'Error: ', output
示例2: qinit
a2=1.0 #a2values[ii]
KB = Z
rhoB = Z
state.aux_global['KB'] = KB
state.aux_global['rhoB'] = rhoB
state.aux_global['trdone'] = False
state.aux=setaux(xc,rhoB,KB,rhoA,KA,alpha,bc_lower,xupper=xupper)
grid.x.bc_lower=2
grid.x.bc_upper=2
state.t = 0.0
qinit(state,ic=2,a2=a2)
init_solution = Solution(state)
claw.solution = init_solution
claw.solution.t = 0.0
claw.tfinal = tfinal
claw.outdir = './_output_Z'+str(Z)+'_'+str(cellsperlayer)
status = claw.run()
else:
# Solve
status = claw.run()
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(stegoton)
示例3: run_app_from_main
#qinit(state,mx,my)
#===========================================================================
# Set up controller and controller parameters
#===========================================================================
claw = pyclaw.Controller()
claw.keep_copy = False
claw.output_style = 1
claw.num_output_times = 10
claw.tfinal = 10
claw.solution = pyclaw.Solution(state,domain)
claw.solver = solver
claw.outdir = outdir
#===========================================================================
# Solve the problem
#===========================================================================
status = claw.run()
#===========================================================================
# Plot results
#===========================================================================
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(shallow_4_Rossby_Haurwitz)
示例4: run_app_from_main
claw.keep_copy = False
claw.outstyle = 1
claw.nout = 10
claw.tfinal = 1.0
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.outdir = outdir
#===========================================================================
# Solve the problem
#===========================================================================
status = claw.run()
#===========================================================================
# Plot results
#===========================================================================
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(advection_annulus)
print 'Error: ',output
示例5: run_app_from_main
state = pyclaw.State(grid,meqn)
state.aux_global['gamma']= gamma
state.aux_global['gamma1']= gamma1
state.q[0,:] = 1.
state.q[1,:] = 0.
x =state.grid.x.center
state.q[2,:] = ( (x<0.1)*1.e3 + (0.1<=x)*(x<0.9)*1.e-2 + (0.9<=x)*1.e2 ) / gamma1
solver.limiters = 4
claw = pyclaw.Controller()
claw.tfinal = 0.038
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.nout = 10
claw.outdir = outdir
# Solve
status = claw.run()
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
return claw.solution.q
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(wcblast)
示例6: qinit
meqn = 5
maux=8
state = pyclaw.State(grid,meqn,maux)
state.aux_global['gamma']= gamma
state.aux_global['gamma1']= gamma1
qinit(state)
auxinit(state)
solver.user_bc_lower=shockbc
claw = pyclaw.Controller()
claw.tfinal = 0.75
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.nout = 10
claw.outdir = outdir
# Solve
status = claw.run()
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
return claw.solution.q
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(shockbubble)
示例7: qinit
# ================
qinit(state) # This function is defined above
#===========================================================================
# Set up controller and controller parameters
#===========================================================================
claw = pyclaw.Controller()
claw.tfinal = 2.0
claw.solution = pyclaw.Solution(state,domain)
claw.solver = solver
claw.num_output_times = 10
print claw.num_output_times
claw.outdir = outdir
#===========================================================================
# Solve the problem
#===========================================================================
status = claw.run()
#===========================================================================
# Plot results
#===========================================================================
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(advection2D)
示例8: run_app_from_main
ts.setTimeStep(solver.dt)
ts.setDuration(claw.tfinal, max_steps=1000)
ts.setFromOptions()
q0 = x[:].copy()
ts.solve(x)
qfinal = x[:].copy()
dx = grid.d[0]
else:
status = claw.run()
#This test is set up so that the waves pass through the domain
#exactly once, and the final solution should be equal to the
#initial condition. Here we output the 1-norm of their difference.
q0=claw.frames[0].grid.gqVec.getArray().reshape([-1])
qfinal=claw.frames[claw.nout].grid.gqVec.getArray().reshape([-1])
dx=claw.frames[0].grid.d[0]
if htmlplot: plot.html_plot(outdir=outdir,format=output_format)
if iplot: plot.interactive_plot(outdir=outdir,format=output_format)
if petscPlot: plot.plotPetsc(output_object)
print 'Max error:', np.max(qfinal - q0)
return dx*np.sum(np.abs(qfinal-q0))
if __name__=="__main__":
from pyclaw.util import run_app_from_main
error = run_app_from_main(acoustics)
print 'Error: ',error
示例9: run_app_from_main
#===========================================================================
x = pyclaw.Dimension('x',0.0,1.0,500)
grid = pyclaw.Grid(x)
meqn = 1
state = pyclaw.State(grid,meqn)
xc=grid.x.center
state.q[0,:] = np.sin(np.pi*2*xc) + 0.50
state.aux_global['efix']=True
#===========================================================================
# Setup controller and controller parameters. Then solve the problem
#===========================================================================
claw = pyclaw.Controller()
claw.tfinal =0.5
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.outdir = outdir
status = claw.run()
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(burgers)
print 'Error: ',output
示例10: Exception
solver.cfl_desired = 0.8
x = pyclaw.Dimension('x',0.0,1.0,mx)
grid = pyclaw.Grid(x)
num_eqn = 1
state = pyclaw.State(grid,num_eqn)
state.problem_data['u']=1.
xc=grid.x.center
if IC=='gauss_square':
state.q[0,:] = np.exp(-beta * (xc-x0)**2) + (xc>0.6)*(xc<0.8)
elif IC=='wavepacket':
state.q[0,:] = np.exp(-beta * (xc-x0)**2) * np.sin(80.*xc)
else:
raise Exception('Unrecognized initial condition specification.')
claw = pyclaw.Controller()
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.outdir = outdir
claw.tfinal =10.0
status = claw.run()
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(fig_61_62_63)
示例11: qinit
solver.limiters = pyclaw.limiters.tvd.MC
solver.bc_lower[0] = 2
solver.bc_upper[0] = 2
solver.aux_bc_lower[0] = 2
solver.aux_bc_upper[0] = 2
xlower=0.0; xupper=1.0; mx=100
x = pyclaw.Dimension('x',xlower,xupper,mx)
grid = pyclaw.Grid(x)
maux=1
meqn = 1
state = pyclaw.State(grid,meqn,maux)
qinit(state)
auxinit(state)
claw = pyclaw.Controller()
claw.outdir = outdir
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.tfinal = 1.0
status = claw.run()
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(vc_advection)
示例12: run_app_from_main
state.aux_global['cc']=np.sqrt(bulk/rho)
#========================================================================
# Set the initial condition
#========================================================================
xc=grid.x.center
beta=100; gamma=0; x0=0.75
state.q[0,:] = 0.5*np.exp(-80 * xc**2) + 0.5*(np.abs(xc+0.2)<0.1)
state.q[1,:] = 0.
#========================================================================
# Set up the controller object
#========================================================================
claw = pyclaw.Controller()
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.outdir = outdir
claw.tfinal = 3.0
claw.nout = 30
# Solve
status = claw.run()
# Plot results
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(fig_31_38)
示例13: qinit
x = pyclaw.Dimension('x',-2.0,2.0,mx)
y = pyclaw.Dimension('y',-2.0,2.0,my)
domain = pyclaw.Domain([x,y])
num_eqn = 1
state = pyclaw.State(domain,num_eqn)
qinit(state)
solver.dimensional_split = 1
solver.cfl_max = 1.0
solver.cfl_desired = 0.9
solver.num_waves = 2
solver.limiters = pyclaw.limiters.tvd.minmod
claw = pyclaw.Controller()
claw.tfinal = 1.0
claw.solution = pyclaw.Solution(state,domain)
claw.solver = solver
claw.num_output_times = 10
# Solve
status = claw.run()
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(kpp)
示例14: setaux
state.aux_global = {}
state.aux_global['turnZero_half_2D'] = turnZero_half_2D
state.aux_global['t_turnZero'] = t_turnZero
state.mp = 1
state.aux = setaux(grid.x.center,grid.y.center)
#Initial condition
qinit(state,A,x0,y0,varx,vary)
claw.solution = pyclaw.Solution(state)
claw.nout = nout
#claw.p_function = p_function
claw.compute_F = compute_F
grid.add_gauges([[0.25,0.25],[0.75,0.25],[0.25,0.75],[0.75,0.75]])
solver.compute_gauge_values = gauge_pfunction
claw.write_aux_init = False
#Solve
status = claw.run()
#strain=claw.frames[claw.nout].state.gqVec.getArray().reshape([grid.ng[0],grid.ng[1],meqn])[:,:,0]
#return strain
if iplot: pyclaw.plot.interactive_plot()
if htmlplot: pyclaw.plot.html_plot()
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(psystem2D)
示例15: run_app_from_main
x0 = 0.75
state.q[0,:] = np.exp(-beta * (xc-x0)**2) * np.cos(gamma * (xc - x0))
#===========================================================================
# Set up controller and controller parameters
#===========================================================================
claw = pyclaw.Controller()
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.outdir = outdir
claw.tfinal = 1.0
#===========================================================================
# Solve the problem
#===========================================================================
status = claw.run()
#===========================================================================
# Plot results
#===========================================================================
#if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
#if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
if __name__=="__main__":
from pyclaw.util import run_app_from_main
output = run_app_from_main(advection_implicitLW)
print 'Error: ',output