本文整理汇总了Python中pychron.graph.graph.Graph类的典型用法代码示例。如果您正苦于以下问题:Python Graph类的具体用法?Python Graph怎么用?Python Graph使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Graph类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _pos_graph_default
def _pos_graph_default(self):
g = Graph()
p = g.new_plot()
s, p = g.new_series()
cp = CurrentPointOverlay(component=s)
s.overlays.append(cp)
self._cp = cp
return g
示例2: _graph_factory
def _graph_factory(self, graph=None):
if graph is None:
graph = Graph(
window_title=self.title,
container_dict=dict(padding=5,
bgcolor='lightgray'))
graph.new_plot(
padding=[50, 5, 5, 50],
xtitle='DAC (V)',
ytitle='Intensity (fA)',
zoom=False,
show_legend='ul',
legend_kw=dict(
font='modern 8',
line_spacing=1))
self._series_factory(graph)
graph.set_series_label('*{}'.format(self.reference_detector))
self._markup_idx = 1
spec = self.spectrometer
for di in self.additional_detectors:
det = spec.get_detector(di)
c = det.color
self._series_factory(graph, line_color=c)
graph.set_series_label(di)
if self.show_label:
graph.add_plot_label('{}@{}'.format(self.reference_isotope,
self.reference_detector), hjustify='center')
return graph
示例3: _src_graph_default
def _src_graph_default(self):
g = Graph()
p = g.new_plot(padding_top=10)
p.data.set_data("imagedata", zeros((self.height * self.pxpermm, self.width * self.pxpermm)))
p.img_plot("imagedata", colormap=jet)
p = g.new_plot(padding_bottom=10)
p.data.set_data("imagedata", zeros((self.height * self.pxpermm, self.width * self.pxpermm)))
p.img_plot("imagedata", colormap=jet)
return g
示例4: _graph_factory
def _graph_factory(self):
graph = Graph(container_dict=dict(padding=5,
bgcolor='lightgray'))
graph.new_plot(
padding=[50, 5, 5, 50],
# title='{}'.format(self.title),
xtitle='CDD Operating Voltage (V)',
ytitle='Intensity (fA)',
)
graph.new_series(type='scatter',
marker='pixel')
return graph
示例5: _graph_factory
def _graph_factory(self):
g = Graph(window_title='Coincidence Scan',
container_dict=dict(padding=5, bgcolor='lightgray')
)
g.new_plot(padding=[50, 5, 5, 50],
ytitle='Intensity (fA)',
xtitle='Operating Voltage (V)')
for di in self.spectrometer.detectors:
g.new_series(
name=di.name,
color=di.color)
return g
示例6: _test
def _test(self):
p = '/Users/ross/Pychrondata_demo/data/snapshots/scan6/007.jpg'
g = Graph()
g.new_plot()
for scan_i, z, idxs in [
# 1,
# 2,
# 3, 4, 5,
# (6, [20, 30, 40, 50, 60, 70, 80, 90, 100, ],
# [2, 3, 4, 5, 6, 7, 8, 9, 10]
# ),
(6, [10],
[1]
),
# (6, [100, 90, 80, 70, 60, 50, 40, 30, 20],
# [11, 12, 13, 14, 15, 16, 17, 18, 19]
# )
]:
dxs = []
zs = []
root = '/Users/ross/Pychrondata_demo/data/snapshots/scan{}'.format(scan_i)
for zi, idx in zip(z, idxs):
pn = os.path.join(root, '{:03n}.jpg'.format(idx))
d = load_image(pn)
dx = self._calculate_spacing(d)
dxs.append(dx)
zs.append(zi)
g.new_series(zs, dxs, type='scatter')
coeffs = polyfit(zs, dxs, 2)
print 'parabolic intercept {}'.format(coeffs[-1])
xs = linspace(0, max(zs))
ys = polyval(coeffs, xs)
g.new_series(xs, ys)
fitfunc = lambda p, x: p[0] * exp(p[1] * x) + p[2]
lr = LeastSquaresRegressor(fitfunc=fitfunc,
initial_guess=[1, 0.1, 0],
xs=zs,
ys=dxs
)
xs = linspace(0, max(zs))
ys = lr.predict(xs)
print 'exponential intercept {}'.format(lr.predict(0))
g.new_series(xs, ys)
invoke_in_main_thread(g.edit_traits)
示例7: _graph_factory
def _graph_factory(self):
gc = self.graph_cnt
cnt = '' if not gc else gc
self.graph_cnt += 1
name = self.parent.name if self.parent else 'Foo'
g = Graph(window_title='{} Power Calibration {}'.format(name, cnt),
container_dict=dict(padding=5),
window_x=500 + gc * 25,
window_y=25 + gc * 25
)
g.new_plot(
xtitle='Setpoint (%)',
ytitle='Measured Power (W)')
g.new_series()
return g
示例8: _rebuild_hole_vs_j
def _rebuild_hole_vs_j(self, x, y, r, reg):
g = Graph()
self.graph = g
p = g.new_plot(xtitle='Hole (Theta)',
ytitle='J',
padding=[90, 5, 5, 40])
p.y_axis.tick_label_formatter = lambda x: floatfmt(x, n=2, s=3)
xs = arctan2(x, y)
ys = reg.ys
yserr = reg.yserr
scatter, _ = g.new_series(xs, ys,
yerror=yserr,
type='scatter', marker='circle')
ebo = ErrorBarOverlay(component=scatter,
orientation='y')
scatter.overlays.append(ebo)
self._add_inspector(scatter)
a = max((abs(min(xs)), abs(max(xs))))
fxs = linspace(-a, a)
a = r * sin(fxs)
b = r * cos(fxs)
pts = vstack((a, b)).T
fys = reg.predict(pts)
g.new_series(fxs, fys)
g.set_x_limits(-3.2, 3.2)
示例9: _gc
def _gc(self, p, det, kind):
g = Graph(container_dict=dict(padding=5), window_width=1000, window_height=800, window_x=40, window_y=20)
with open(p, "r") as rfile:
# gather data
reader = csv.reader(rfile)
header = reader.next()
groups = self._parse_data(reader)
"""
groups= [data,]
data shape = nrow,ncols
"""
data = groups[0]
x = data[0]
y = data[header.index(det)]
sy = smooth(y, window_len=120) # , window='flat')
x = x[::50]
y = y[::50]
sy = sy[::50]
# smooth
# plot
g.new_plot(zoom=True, xtitle="Time (s)", ytitle="{} Baseline Intensity (fA)".format(det))
g.new_series(x, y, type=kind, marker="dot", marker_size=2)
g.new_series(x, sy, line_width=2)
# g.set_x_limits(500, 500 + 60 * 30)
# g.edit_traits()
return g
示例10: _graph_default
def _graph_default(self):
g = Graph(container_dict=dict(padding=5))
g.new_plot(padding=5)
g.set_axis_traits(axis='y', visible=False)
g.set_axis_traits(axis='x', visible=False)
g.set_grid_traits(grid='x', visible=False)
g.set_grid_traits(grid='y', visible=False)
return g
示例11: graph
def graph(poly, opoly, line):
from pychron.graph.graph import Graph
g = Graph()
g.new_plot()
for po in (poly, opoly):
po = np.array(po)
try:
xs, ys = po.T
except ValueError:
xs, ys, _ = po.T
xs = np.hstack((xs, xs[0]))
ys = np.hstack((ys, ys[0]))
g.new_series(xs, ys)
# for i, (p1, p2) in enumerate(lines):
# xi, yi = (p1[0], p2[0]), (p1[1], p2[1])
# g.new_series(xi, yi, color='black')
return g
示例12: __init__
def __init__(self, *args, **kw):
super(Scanner, self).__init__(*args, **kw)
graph = Graph()
self.graph = graph
p = graph.new_plot(padding_top=30, padding_right=10)
self._add_bounds(p)
self._add_mftable_overlay(p)
self._add_limit_tool(p)
p.index_range.on_trait_change(self._handle_xbounds_change, 'updated')
# graph.set_x_limits(self.min_dac, self.max_dac)
graph.new_series()
graph.set_x_title('Magnet DAC (Voltage)')
graph.set_y_title('Intensity')
self._use_mftable_limits_fired()
示例13: make_component
def make_component(self, padding):
cg = ContourGraph()
cg.new_plot(title='Beam Space',
xtitle='X mm',
ytitle='Y mm',
aspect_ratio=1
)
g = Graph()
g.new_plot(title='Motor Space',
xtitle='X mm',
ytitle='Power',
)
g.new_series(
)
self.graph = g
self.contour_graph = cg
c = HPlotContainer()
c.add(g.plotcontainer)
c.add(cg.plotcontainer)
return c
示例14: _execute_power_calibration_check
def _execute_power_calibration_check(self):
'''
'''
g = Graph()
g.new_plot()
g.new_series()
g.new_series(x=[0, 100], y=[0, 100], line_style='dash')
do_later(self._open_graph, graph=g)
self._stop_signal = TEvent()
callback = lambda pi, r: None
self._iterate(self.check_parameters,
g, False, callback)
示例15: _graph_default
def _graph_default(self):
g = Graph(container_dict=dict(padding=5,
kind='h'))
g.new_plot(xtitle='weight (mg)', ytitle='40Ar* (fA)',
padding=[60, 20, 60, 60]
# padding=60
)
g.new_series()
g.new_plot(xtitle='40Ar* (fA)', ytitle='%Error in Age',
padding=[30, 30, 60, 60]
)
g.new_series()
# fp = create_line_plot(([], []), color='red')
# left, bottom = add_default_axes(fp)
# bottom.visible = False
# left.orientation = 'right'
# left.axis_line_visible = False
# bottom.axis_line_visible = False
# left.visible = False
# if self.kind == 'weight':
# bottom.visible = True
# bottom.orientation = 'top'
# bottom.title = 'Error (ka)'
# bottom.tick_color = 'red'
# bottom.tick_label_color = 'red'
# bottom.line_color = 'red'
# bottom.title_color = 'red'
# else:
# left.title = 'Weight (mg)'
# fp.visible = False
# gd = GuideOverlay(fp, value=0.01, orientation='v')
# fp.overlays.append(gd)
# g.plots[0].add(fp)
# self.secondary_plot = fp
return g