当前位置: 首页>>代码示例>>Python>>正文


Python TimeSeries._epoch方法代码示例

本文整理汇总了Python中pycbc.types.TimeSeries._epoch方法的典型用法代码示例。如果您正苦于以下问题:Python TimeSeries._epoch方法的具体用法?Python TimeSeries._epoch怎么用?Python TimeSeries._epoch使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pycbc.types.TimeSeries的用法示例。


在下文中一共展示了TimeSeries._epoch方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_td_from_freqtau

# 需要导入模块: from pycbc.types import TimeSeries [as 别名]
# 或者: from pycbc.types.TimeSeries import _epoch [as 别名]
def get_td_from_freqtau(template=None, taper=None, **kwargs):
    """Return time domain ringdown with all the modes specified.

    Parameters
    ----------
    template: object
        An object that has attached properties. This can be used to substitute
        for keyword arguments. A common example would be a row in an xml table.
    taper: {None, float}, optional
        Tapering at the beginning of the waveform with duration taper * tau.
        This option is recommended with timescales taper=1./2 or 1. for
        time-domain ringdown-only injections.
        The abrupt turn on of the ringdown can cause issues on the waveform
        when doing the fourier transform to the frequency domain. Setting
        taper will add a rapid ringup with timescale tau/10.
        Each mode and overtone will have a different taper depending on its tau,
        the final taper being the superposition of all the tapers.
    lmns : list
        Desired lmn modes as strings (lm modes available: 22, 21, 33, 44, 55).
        The n specifies the number of overtones desired for the corresponding
        lm pair (maximum n=8).
        Example: lmns = ['223','331'] are the modes 220, 221, 222, and 330
    f_lmn: float
        Central frequency of the lmn overtone, as many as number of modes.
    tau_lmn: float
        Damping time of the lmn overtone, as many as number of modes.
    amp220 : float
        Amplitude of the fundamental 220 mode.
    amplmn : float
        Fraction of the amplitude of the lmn overtone relative to the
        fundamental mode, as many as the number of subdominant modes.
    philmn : float
        Phase of the lmn overtone, as many as the number of modes. Should also
        include the information from the azimuthal angle (phi + m*Phi).
    inclination : {None, float}, optional
        Inclination of the system in radians. If None, the spherical harmonics
        will be set to 1.
    delta_t : {None, float}, optional
        The time step used to generate the ringdown.
        If None, it will be set to the inverse of the frequency at which the
        amplitude is 1/1000 of the peak amplitude (the minimum of all modes).
    t_final : {None, float}, optional
        The ending time of the output frequency series.
        If None, it will be set to the time at which the amplitude
        is 1/1000 of the peak amplitude (the maximum of all modes).

    Returns
    -------
    hplustilde: FrequencySeries
        The plus phase of a ringdown with the lm modes specified and
        n overtones in frequency domain.
    hcrosstilde: FrequencySeries
        The cross phase of a ringdown with the lm modes specified and
        n overtones in frequency domain.
    """

    input_params = props(template, freqtau_required_args, **kwargs)

    # Get required args
    f_0, tau = lm_freqs_taus(**input_params)
    lmns = input_params['lmns']
    for lmn in lmns:
        if int(lmn[2]) == 0:
            raise ValueError('Number of overtones (nmodes) must be greater '
                             'than zero.')
    # following may not be in input_params
    inc = input_params.pop('inclination', None)
    delta_t = input_params.pop('delta_t', None)
    t_final = input_params.pop('t_final', None)

    if not delta_t:
        delta_t = lm_deltat(f_0, tau, lmns)
    if not t_final:
        t_final = lm_tfinal(tau, lmns)

    kmax = int(t_final / delta_t) + 1
    # Different overtones will have different tapering window-size
    # Find maximum window size to create long enough output vector
    if taper:
        taper_window = int(taper*max(tau.values())/delta_t)
        kmax += taper_window

    outplus = TimeSeries(zeros(kmax, dtype=float64), delta_t=delta_t)
    outcross = TimeSeries(zeros(kmax, dtype=float64), delta_t=delta_t)
    if taper:
        start = - taper * max(tau.values())
        outplus._epoch, outcross._epoch = start, start

    for lmn in lmns:
        l, m, nmodes = int(lmn[0]), int(lmn[1]), int(lmn[2])
        hplus, hcross = get_td_lm(freqs=f_0, taus=tau, l=l, m=m, nmodes=nmodes,
                             taper=taper, inclination=inc, delta_t=delta_t,
                             t_final=t_final, **input_params)
        if not taper:
            outplus.data += hplus.data
            outcross.data += hcross.data
        else:
            outplus = taper_shift(hplus, outplus)
            outcross = taper_shift(hcross, outcross)

#.........这里部分代码省略.........
开发者ID:bhooshan-gadre,项目名称:pycbc,代码行数:103,代码来源:ringdown.py

示例2: get_td_qnm

# 需要导入模块: from pycbc.types import TimeSeries [as 别名]
# 或者: from pycbc.types.TimeSeries import _epoch [as 别名]

#.........这里部分代码省略.........
    ----------
    template: object
        An object that has attached properties. This can be used to substitute
        for keyword arguments. A common example would be a row in an xml table.
    taper: {None, float}, optional
        Tapering at the beginning of the waveform with duration taper * tau.
        This option is recommended with timescales taper=1./2 or 1. for
        time-domain ringdown-only injections.
        The abrupt turn on of the ringdown can cause issues on the waveform
        when doing the fourier transform to the frequency domain. Setting
        taper will add a rapid ringup with timescale tau/10.
    f_0 : float
        The ringdown-frequency.
    tau : float
        The damping time of the sinusoid.
    amp : float
        The amplitude of the ringdown (constant for now).
    phi : float
        The initial phase of the ringdown. Should also include the information
        from the azimuthal angle (phi_0 + m*Phi)
    inclination : {None, float}, optional
        Inclination of the system in radians for the spherical harmonics.
    l : {2, int}, optional
        l mode for the spherical harmonics. Default is l=2.
    m : {2, int}, optional
        m mode for the spherical harmonics. Default is m=2.
    delta_t : {None, float}, optional
        The time step used to generate the ringdown.
        If None, it will be set to the inverse of the frequency at which the
        amplitude is 1/1000 of the peak amplitude.
    t_final : {None, float}, optional
        The ending time of the output time series.
        If None, it will be set to the time at which the amplitude is
        1/1000 of the peak amplitude.

    Returns
    -------
    hplus: TimeSeries
        The plus phase of the ringdown in time domain.
    hcross: TimeSeries
        The cross phase of the ringdown in time domain.
    """

    input_params = props(template, qnm_required_args, **kwargs)

    f_0 = input_params.pop('f_0')
    tau = input_params.pop('tau')
    amp = input_params.pop('amp')
    phi = input_params.pop('phi')
    # the following may not be in input_params
    inc = input_params.pop('inclination', None)
    l = input_params.pop('l', 2)
    m = input_params.pop('m', 2)
    delta_t = input_params.pop('delta_t', None)
    t_final = input_params.pop('t_final', None)

    if not delta_t:
        delta_t = 1. / qnm_freq_decay(f_0, tau, 1./1000)
        if delta_t < min_dt:
            delta_t = min_dt
    if not t_final:
        t_final = qnm_time_decay(tau, 1./1000)

    kmax = int(t_final / delta_t) + 1
    times = numpy.arange(kmax) * delta_t
    if inc is not None:
        Y_plus, Y_cross = spher_harms(l, m, inc)
    else:
        Y_plus, Y_cross = 1, 1

    hplus = amp * Y_plus * numpy.exp(-times/tau) * \
                                numpy.cos(two_pi*f_0*times + phi)
    hcross = amp * Y_cross * numpy.exp(-times/tau) * \
                                numpy.sin(two_pi*f_0*times + phi)

    if taper and delta_t < taper*tau:
        taper_window = int(taper*tau/delta_t)
        kmax += taper_window

    outplus = TimeSeries(zeros(kmax), delta_t=delta_t)
    outcross = TimeSeries(zeros(kmax), delta_t=delta_t)

    # If size of tapering window is less than delta_t, do not apply taper.
    if not taper or delta_t > taper*tau:
        outplus.data[:kmax] = hplus
        outcross.data[:kmax] = hcross

        return outplus, outcross

    else:
        taper_hp, taper_hc = apply_taper(delta_t, taper, f_0, tau, amp, phi,
                                                                    l, m, inc)
        start = - taper * tau
        outplus.data[:taper_window] = taper_hp
        outplus.data[taper_window:] = hplus
        outcross.data[:taper_window] = taper_hc
        outcross.data[taper_window:] = hcross
        outplus._epoch, outcross._epoch = start, start

        return outplus, outcross
开发者ID:bhooshan-gadre,项目名称:pycbc,代码行数:104,代码来源:ringdown.py

示例3: get_td_lm

# 需要导入模块: from pycbc.types import TimeSeries [as 别名]
# 或者: from pycbc.types.TimeSeries import _epoch [as 别名]
def get_td_lm(template=None, taper=None, **kwargs):
    """Return time domain lm mode with the given number of overtones.

    Parameters
    ----------
    template: object
        An object that has attached properties. This can be used to substitute
        for keyword arguments. A common example would be a row in an xml table.
    taper: {None, float}, optional
        Tapering at the beginning of the waveform with duration taper * tau.
        This option is recommended with timescales taper=1./2 or 1. for
        time-domain ringdown-only injections.
        The abrupt turn on of the ringdown can cause issues on the waveform
        when doing the fourier transform to the frequency domain. Setting
        taper will add a rapid ringup with timescale tau/10.
        Each overtone will have a different taper depending on its tau, the
        final taper being the superposition of all the tapers.
    freqs : dict
        {lmn:f_lmn} Dictionary of the central frequencies for each overtone,
        as many as number of modes.
    taus : dict
        {lmn:tau_lmn} Dictionary of the damping times for each overtone,
        as many as number of modes.
    l : int
        l mode (lm modes available: 22, 21, 33, 44, 55).
    m : int
        m mode (lm modes available: 22, 21, 33, 44, 55).
    nmodes: int
        Number of overtones desired (maximum n=8)
    amp220 : float
        Amplitude of the fundamental 220 mode, needed for any lm.
    amplmn : float
        Fraction of the amplitude of the lmn overtone relative to the
        fundamental mode, as many as the number of subdominant modes.
    philmn : float
        Phase of the lmn overtone, as many as the number of modes. Should also
        include the information from the azimuthal angle (phi + m*Phi).
    inclination : {None, float}, optional
        Inclination of the system in radians for the spherical harmonics.
    delta_t : {None, float}, optional
        The time step used to generate the ringdown.
        If None, it will be set to the inverse of the frequency at which the
        amplitude is 1/1000 of the peak amplitude (the minimum of all modes).
    t_final : {None, float}, optional
        The ending time of the output time series.
        If None, it will be set to the time at which the amplitude is
        1/1000 of the peak amplitude (the maximum of all modes).

    Returns
    -------
    hplus: TimeSeries
        The plus phase of a lm mode with overtones (n) in time domain.
    hcross: TimeSeries
        The cross phase of a lm mode with overtones (n) in time domain.
    """

    input_params = props(template, lm_required_args, **kwargs)

    # Get required args
    amps, phis = lm_amps_phases(**input_params)
    f_0 = input_params.pop('freqs')
    tau = input_params.pop('taus')
    inc = input_params.pop('inclination', None)
    l, m = input_params.pop('l'), input_params.pop('m')
    nmodes = input_params.pop('nmodes')
    if int(nmodes) == 0:
        raise ValueError('Number of overtones (nmodes) must be greater '
                         'than zero.')
    # The following may not be in input_params
    delta_t = input_params.pop('delta_t', None)
    t_final = input_params.pop('t_final', None)

    if not delta_t:
        delta_t = lm_deltat(f_0, tau, ['%d%d%d' %(l,m,nmodes)])
    if not t_final:
        t_final = lm_tfinal(tau, ['%d%d%d' %(l, m, nmodes)])

    kmax = int(t_final / delta_t) + 1
    # Different overtones will have different tapering window-size
    # Find maximum window size to create long enough output vector
    if taper:
        taper_window = int(taper*max(tau.values())/delta_t)
        kmax += taper_window

    outplus = TimeSeries(zeros(kmax, dtype=float64), delta_t=delta_t)
    outcross = TimeSeries(zeros(kmax, dtype=float64), delta_t=delta_t)
    if taper:
        start = - taper * max(tau.values())
        outplus._epoch, outcross._epoch = start, start

    for n in range(nmodes):
        hplus, hcross = get_td_qnm(template=None, taper=taper,
                            f_0=f_0['%d%d%d' %(l,m,n)],
                            tau=tau['%d%d%d' %(l,m,n)],
                            phi=phis['%d%d%d' %(l,m,n)],
                            amp=amps['%d%d%d' %(l,m,n)],
                            inclination=inc, l=l, m=m,
                            delta_t=delta_t, t_final=t_final)
        if not taper:
            outplus.data += hplus.data
#.........这里部分代码省略.........
开发者ID:bhooshan-gadre,项目名称:pycbc,代码行数:103,代码来源:ringdown.py

示例4: get_td_qnm

# 需要导入模块: from pycbc.types import TimeSeries [as 别名]
# 或者: from pycbc.types.TimeSeries import _epoch [as 别名]
def get_td_qnm(template=None, taper=None, **kwargs):
    """Return a time domain damped sinusoid.

    Parameters
    ----------
    template: object
        An object that has attached properties. This can be used to substitute
        for keyword arguments. A common example would be a row in an xml table.
    taper: {None, float}, optional
        Tapering at the beginning of the waveform with duration taper * tau.
        This option is recommended with timescales taper=1./2 or 1. for
        time-domain ringdown-only injections.
        The abrupt turn on of the ringdown can cause issues on the waveform
        when doing the fourier transform to the frequency domain. Setting
        taper will add a rapid ringup with timescale tau/10.
    f_0 : float
        The ringdown-frequency.
    tau : float
        The damping time of the sinusoid.
    phi : float
        The initial phase of the ringdown.
    amp : float
        The amplitude of the ringdown (constant for now).
    delta_t : {None, float}, optional
        The time step used to generate the ringdown.
        If None, it will be set to the inverse of the frequency at which the
        amplitude is 1/1000 of the peak amplitude.
    t_final : {None, float}, optional
        The ending time of the output time series.
        If None, it will be set to the time at which the amplitude is 
        1/1000 of the peak amplitude.

    Returns
    -------
    hplus: TimeSeries
        The plus phase of the ringdown in time domain.
    hcross: TimeSeries
        The cross phase of the ringdown in time domain.
    """

    input_params = props(template, qnm_required_args, **kwargs)
    
    f_0 = input_params.pop('f_0')
    tau = input_params.pop('tau')
    amp = input_params.pop('amp')
    phi = input_params.pop('phi')
    # the following may not be in input_params
    delta_t = input_params.pop('delta_t', None)
    t_final = input_params.pop('t_final', None)

    if delta_t is None:
        delta_t = 1. / qnm_freq_decay(f_0, tau, 1./1000)
        if delta_t < min_dt:
            delta_t = min_dt
    if t_final is None:
        t_final = qnm_time_decay(tau, 1./1000)
    kmax = int(t_final / delta_t) + 1

    times = numpy.arange(kmax) * delta_t

    hp = amp * numpy.exp(-times/tau) * numpy.cos(two_pi*f_0*times + phi)
    hc = amp * numpy.exp(-times/tau) * numpy.sin(two_pi*f_0*times + phi)

    # If size of tapering window is less than delta_t, do not apply taper.
    if taper is None or delta_t > taper*tau:
        hplus = TimeSeries(zeros(kmax), delta_t=delta_t)
        hcross = TimeSeries(zeros(kmax), delta_t=delta_t)
        hplus.data[:kmax] = hp
        hcross.data[:kmax] = hc

        return hplus, hcross

    else:
        taper_hp, taper_hc, taper_window, start = apply_taper(delta_t, taper,
                                                        f_0, tau, amp, phi)
        hplus = TimeSeries(zeros(taper_window+kmax), delta_t=delta_t)
        hcross = TimeSeries(zeros(taper_window+kmax), delta_t=delta_t)
        hplus.data[:taper_window] = taper_hp
        hplus.data[taper_window:] = hp
        hplus._epoch = start
        hcross.data[:taper_window] = taper_hc
        hcross.data[taper_window:] = hc
        hcross._epoch = start

        return hplus, hcross
开发者ID:johnveitch,项目名称:pycbc,代码行数:87,代码来源:ringdown.py


注:本文中的pycbc.types.TimeSeries._epoch方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。