当前位置: 首页>>代码示例>>Python>>正文


Python FrequencySeries.conj方法代码示例

本文整理汇总了Python中pycbc.types.FrequencySeries.conj方法的典型用法代码示例。如果您正苦于以下问题:Python FrequencySeries.conj方法的具体用法?Python FrequencySeries.conj怎么用?Python FrequencySeries.conj使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pycbc.types.FrequencySeries的用法示例。


在下文中一共展示了FrequencySeries.conj方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: welch

# 需要导入模块: from pycbc.types import FrequencySeries [as 别名]
# 或者: from pycbc.types.FrequencySeries import conj [as 别名]
def welch(timeseries, seg_len=4096, seg_stride=2048, window='hann',
          avg_method='median', num_segments=None, require_exact_data_fit=False):
    """PSD estimator based on Welch's method.

    Parameters
    ----------
    timeseries : TimeSeries
        Time series for which the PSD is to be estimated.
    seg_len : int
        Segment length in samples.
    seg_stride : int
        Separation between consecutive segments, in samples.
    window : {'hann'}
        Function used to window segments before Fourier transforming.
    avg_method : {'median', 'mean', 'median-mean'}
        Method used for averaging individual segment PSDs.

    Returns
    -------
    psd : FrequencySeries
        Frequency series containing the estimated PSD.

    Raises
    ------
    ValueError
        For invalid choices of `seg_len`, `seg_stride` `window` and
        `avg_method` and for inconsistent combinations of len(`timeseries`),
        `seg_len` and `seg_stride`.

    Notes
    -----
    See arXiv:gr-qc/0509116 for details.
    """
    window_map = {
        'hann': numpy.hanning
    }

    # sanity checks
    if not window in window_map:
        raise ValueError('Invalid window')
    if not avg_method in ('mean', 'median', 'median-mean'):
        raise ValueError('Invalid averaging method')
    if type(seg_len) is not int or type(seg_stride) is not int \
        or seg_len <= 0 or seg_stride <= 0:
        raise ValueError('Segment length and stride must be positive integers')

    if timeseries.precision == 'single':
        fs_dtype = numpy.complex64
    elif timeseries.precision == 'double':
        fs_dtype = numpy.complex128
        
    num_samples = len(timeseries)
    if num_segments is None:
        num_segments = int(num_samples // seg_stride)
        # NOTE: Is this not always true?
        if (num_segments - 1) * seg_stride + seg_len > num_samples:
            num_segments -= 1

    if not require_exact_data_fit:
        data_len = (num_segments - 1) * seg_stride + seg_len

        # Get the correct amount of data
        if data_len < num_samples:
            diff = num_samples - data_len
            start = diff // 2
            end = num_samples - diff // 2
            # Want this to be integers so if diff is odd, catch it here.
            if diff % 2:
                start = start + 1

            timeseries = timeseries[start:end]
            num_samples = len(timeseries)
        if data_len > num_samples:
            err_msg = "I was asked to estimate a PSD on %d " %(data_len)
            err_msg += "data samples. However the data provided only contains "
            err_msg += "%d data samples." %(num_samples)

    if num_samples != (num_segments - 1) * seg_stride + seg_len:
        raise ValueError('Incorrect choice of segmentation parameters')
        
    w = Array(window_map[window](seg_len).astype(timeseries.dtype))

    # calculate psd of each segment
    delta_f = 1. / timeseries.delta_t / seg_len
    segment_tilde = FrequencySeries(numpy.zeros(seg_len / 2 + 1), \
        delta_f=delta_f, dtype=fs_dtype)

    segment_psds = []
    for i in xrange(num_segments):
        segment_start = i * seg_stride
        segment_end = segment_start + seg_len
        segment = timeseries[segment_start:segment_end]
        assert len(segment) == seg_len
        fft(segment * w, segment_tilde)
        seg_psd = abs(segment_tilde * segment_tilde.conj()).numpy()

        #halve the DC and Nyquist components to be consistent with TO10095
        seg_psd[0] /= 2
        seg_psd[-1] /= 2

#.........这里部分代码省略.........
开发者ID:johnveitch,项目名称:pycbc,代码行数:103,代码来源:estimate.py

示例2: inverse_spectrum_truncation

# 需要导入模块: from pycbc.types import FrequencySeries [as 别名]
# 或者: from pycbc.types.FrequencySeries import conj [as 别名]
def inverse_spectrum_truncation(psd, max_filter_len, low_frequency_cutoff=None, trunc_method=None):
    """Modify a PSD such that the impulse response associated with its inverse
    square root is no longer than `max_filter_len` time samples. In practice
    this corresponds to a coarse graining or smoothing of the PSD.

    Parameters
    ----------
    psd : FrequencySeries
        PSD whose inverse spectrum is to be truncated.
    max_filter_len : int
        Maximum length of the time-domain filter in samples.
    low_frequency_cutoff : {None, int}
        Frequencies below `low_frequency_cutoff` are zeroed in the output.
    trunc_method : {None, 'hann'}
        Function used for truncating the time-domain filter.
        None produces a hard truncation at `max_filter_len`.

    Returns
    -------
    psd : FrequencySeries
        PSD whose inverse spectrum has been truncated.

    Raises
    ------
    ValueError
        For invalid types or values of `max_filter_len` and `low_frequency_cutoff`.

    Notes
    -----
    See arXiv:gr-qc/0509116 for details.
    """
    # sanity checks
    if type(max_filter_len) is not int or max_filter_len <= 0:
        raise ValueError('max_filter_len must be a positive integer')
    if low_frequency_cutoff is not None and low_frequency_cutoff < 0 \
        or low_frequency_cutoff > psd.sample_frequencies[-1]:
        raise ValueError('low_frequency_cutoff must be within the bandwidth of the PSD')

    N = (len(psd)-1)*2

    inv_asd = FrequencySeries((1. / psd)**0.5, delta_f=psd.delta_f, \
        dtype=complex_same_precision_as(psd))
        
    inv_asd[0] = 0
    inv_asd[N/2] = 0
    q = TimeSeries(numpy.zeros(N), delta_t=(N / psd.delta_f), \
        dtype=real_same_precision_as(psd))

    if low_frequency_cutoff:
        kmin = int(low_frequency_cutoff / psd.delta_f)
        inv_asd[0:kmin] = 0

    ifft(inv_asd, q)
    
    trunc_start = max_filter_len / 2
    trunc_end = N - max_filter_len / 2

    if trunc_method == 'hann':
        trunc_window = Array(numpy.hanning(max_filter_len), dtype=q.dtype)
        q[0:trunc_start] *= trunc_window[max_filter_len/2:max_filter_len]
        q[trunc_end:N] *= trunc_window[0:max_filter_len/2]

    q[trunc_start:trunc_end] = 0
    psd_trunc = FrequencySeries(numpy.zeros(len(psd)), delta_f=psd.delta_f, \
                                dtype=complex_same_precision_as(psd))
    fft(q, psd_trunc)
    psd_trunc *= psd_trunc.conj()
    psd_out = 1. / abs(psd_trunc)

    return psd_out
开发者ID:johnveitch,项目名称:pycbc,代码行数:72,代码来源:estimate.py


注:本文中的pycbc.types.FrequencySeries.conj方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。