当前位置: 首页>>代码示例>>Python>>正文


Python Logger.configure_output_file方法代码示例

本文整理汇总了Python中pybullet_utils.logger.Logger.configure_output_file方法的典型用法代码示例。如果您正苦于以下问题:Python Logger.configure_output_file方法的具体用法?Python Logger.configure_output_file怎么用?Python Logger.configure_output_file使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybullet_utils.logger.Logger的用法示例。


在下文中一共展示了Logger.configure_output_file方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Logger

# 需要导入模块: from pybullet_utils.logger import Logger [as 别名]
# 或者: from pybullet_utils.logger.Logger import configure_output_file [as 别名]
from pybullet_utils.logger import Logger
logger = Logger()
logger.configure_output_file("e:/mylog.txt")
for i in range (10):
	logger.log_tabular("Iteration", 1)
Logger.print2("hello world")

logger.print_tabular()
logger.dump_tabular()
开发者ID:jiapei100,项目名称:bullet3,代码行数:11,代码来源:testlog.py

示例2: RLAgent

# 需要导入模块: from pybullet_utils.logger import Logger [as 别名]
# 或者: from pybullet_utils.logger.Logger import configure_output_file [as 别名]
class RLAgent(ABC):
    class Mode(Enum):
        TRAIN = 0
        TEST = 1
        TRAIN_END = 2

    NAME = "None"
    
    UPDATE_PERIOD_KEY = "UpdatePeriod"
    ITERS_PER_UPDATE = "ItersPerUpdate"
    DISCOUNT_KEY = "Discount"
    MINI_BATCH_SIZE_KEY = "MiniBatchSize"
    REPLAY_BUFFER_SIZE_KEY = "ReplayBufferSize"
    INIT_SAMPLES_KEY = "InitSamples"
    NORMALIZER_SAMPLES_KEY = "NormalizerSamples"

    OUTPUT_ITERS_KEY = "OutputIters"
    INT_OUTPUT_ITERS_KEY = "IntOutputIters"
    TEST_EPISODES_KEY = "TestEpisodes"

    EXP_ANNEAL_SAMPLES_KEY = "ExpAnnealSamples"
    EXP_PARAM_BEG_KEY = "ExpParamsBeg"
    EXP_PARAM_END_KEY = "ExpParamsEnd"
        
    def __init__(self, world, id, json_data):
        self.world = world
        self.id = id
        self.logger = Logger()
        self._mode = self.Mode.TRAIN
        
        assert self._check_action_space(), \
            Logger.print2("Invalid action space, got {:s}".format(str(self.get_action_space())))
        
        self._enable_training = True
        self.path = Path()
        self.iter = int(0)
        self.start_time = time.time()
        self._update_counter = 0

        self.update_period = 1.0 # simulated time (seconds) before each training update
        self.iters_per_update = int(1)
        self.discount = 0.95
        self.mini_batch_size = int(32)
        self.replay_buffer_size = int(50000)
        self.init_samples = int(1000)
        self.normalizer_samples = np.inf
        self._local_mini_batch_size = self.mini_batch_size # batch size for each work for multiprocessing
        self._need_normalizer_update = True
        self._total_sample_count = 0

        self._output_dir = ""
        self._int_output_dir = ""
        self.output_iters = 100
        self.int_output_iters = 100
        
        self.train_return = 0.0
        self.test_episodes = int(0)
        self.test_episode_count = int(0)
        self.test_return = 0.0
        self.avg_test_return = 0.0
        
        self.exp_anneal_samples = 320000
        self.exp_params_beg = ExpParams()
        self.exp_params_end = ExpParams()
        self.exp_params_curr = ExpParams()

        self._load_params(json_data)
        self._build_replay_buffer(self.replay_buffer_size)
        self._build_normalizers()
        self._build_bounds()
        self.reset()

        return

    def __str__(self):
        action_space_str = str(self.get_action_space())
        info_str = ""
        info_str += '"ID": {:d},\n "Type": "{:s}",\n "ActionSpace": "{:s}",\n "StateDim": {:d},\n "GoalDim": {:d},\n "ActionDim": {:d}'.format(
            self.id, self.NAME, action_space_str[action_space_str.rfind('.') + 1:], self.get_state_size(), self.get_goal_size(), self.get_action_size())
        return "{\n" + info_str + "\n}"

    def get_output_dir(self):
        return self._output_dir
    
    def set_output_dir(self, out_dir):
        self._output_dir = out_dir
        if (self._output_dir != ""):
            self.logger.configure_output_file(out_dir + "/agent" + str(self.id) + "_log.txt")
        return

    output_dir = property(get_output_dir, set_output_dir)

    def get_int_output_dir(self):
        return self._int_output_dir
    
    def set_int_output_dir(self, out_dir):
        self._int_output_dir = out_dir
        return

    int_output_dir = property(get_int_output_dir, set_int_output_dir)
#.........这里部分代码省略.........
开发者ID:jiapei100,项目名称:bullet3,代码行数:103,代码来源:rl_agent.py


注:本文中的pybullet_utils.logger.Logger.configure_output_file方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。