本文整理汇总了Python中pybrain.tools.xml.networkwriter.NetworkWriter.writeToFile方法的典型用法代码示例。如果您正苦于以下问题:Python NetworkWriter.writeToFile方法的具体用法?Python NetworkWriter.writeToFile怎么用?Python NetworkWriter.writeToFile使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.tools.xml.networkwriter.NetworkWriter
的用法示例。
在下文中一共展示了NetworkWriter.writeToFile方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: big_training
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def big_training(np_data, num_nets=1, num_epoch=20, net_builder=net_full, train_size=.1, testing=False):
sss = cross_validation.StratifiedShuffleSplit(np_data[:,:1].ravel(), n_iter=num_nets , test_size=1-train_size, random_state=3476)
nets=[None for net_ind in range(num_nets)]
trainaccu=[[0 for i in range(num_epoch)] for net_ind in range(num_nets)]
testaccu=[[0 for i in range(num_epoch)] for net_ind in range(num_nets)]
net_ind=0
for train_index, test_index in sss:
print ('%s Building %d. network.' %(time.ctime(), net_ind+1))
#print("TRAIN:", len(train_index), "TEST:", len(test_index))
trainset = ClassificationDataSet(np_data.shape[1] - 1, 1)
trainset.setField('input', np_data[train_index,1:]/100-.6)
trainset.setField('target', np_data[train_index,:1])
trainset._convertToOneOfMany( )
trainlabels = trainset['class'].ravel().tolist()
if testing:
testset = ClassificationDataSet(np_data.shape[1] - 1, 1)
testset.setField('input', np_data[test_index,1:]/100-.6)
testset.setField('target', np_data[test_index,:1])
testset._convertToOneOfMany( )
testlabels = testset['class'].ravel().tolist()
nets[net_ind] = net_builder()
trainer = BackpropTrainer(nets[net_ind], trainset)
for i in range(num_epoch):
for ii in range(3):
err = trainer.train()
print ('%s Epoch %d: Network trained with error %f.' %(time.ctime(), i+1, err))
trainaccu[net_ind][i]=accuracy_score(trainlabels,trainer.testOnClassData())
print ('%s Epoch %d: Train accuracy is %f' %(time.ctime(), i+1, trainaccu[net_ind][i]))
print ([sum([trainaccu[y][i]>tres for y in range(net_ind+1)]) for tres in [0,.1,.2,.3,.4,.5,.6]])
if testing:
testaccu[net_ind][i]=accuracy_score(testlabels,trainer.testOnClassData(testset))
print ('%s Epoch %d: Test accuracy is %f' %(time.ctime(), i+1, testaccu[net_ind][i]))
NetworkWriter.writeToFile(nets[net_ind], 'nets/'+net_builder.__name__+str(net_ind)+'.xml')
net_ind +=1
return [nets, trainaccu, testaccu]
示例2: createNet
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def createNet():
"""Create and seed the intial neural network"""
#CONSTANTS
nn_input_dim = 6 #[x_enemy1, y_enemy1, x_enemy2, y_enemy2, x_enemy3, y_enemy3]
nn_output_dim = 6 #[x_ally1, y_ally1, x_ally2, y_ally2, x_ally3, y_ally3]
allyTrainingPos, enemyTrainingPos = runExperiments.makeTrainingDataset()
ds = SupervisedDataSet(nn_input_dim, nn_output_dim)
#normalizes and adds it to the dataset
for i in range(0, len(allyTrainingPos)):
x = normalize(enemyTrainingPos[i])
y = normalize(allyTrainingPos[i])
x = [val for pair in x for val in pair]
y = [val for pair in y for val in pair]
ds.addSample(x, y)
for inpt, target in ds:
print inpt, target
net = buildNetwork(nn_input_dim, 30, nn_output_dim, bias=True, hiddenclass=TanhLayer)
trainer = BackpropTrainer(net, ds)
trainer.trainUntilConvergence()
NetworkWriter.writeToFile(net, "net.xml")
enemyTestPos = runExperiments.makeTestDataset()
print(net.activate([val for pair in normalize(enemyTestPos) for val in pair]))
return ds
示例3: _learn
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def _learn():
global _TRAIN_RATE;
_LEARNINGS_GRADE = 0.00012; # 0.00012 == correct
#_LEARNINGS_GRADE = 0.0012;
#_LEARNINGS_GRADE = 0.012;
#_LEARNINGS_GRADE = 0.12;
#_LEARNINGS_GRADE = 0.80;
#_LEARNINGS_GRADE = 1.4;
#_LEARNINGS_GRADE = 6.2;
#_LEARNINGS_GRADE = 10.2;
_LEARNINGS_GRADE = 20.2;
#_TRAIN_RATE = float(str(_TRAINER.train()));
_SECS = int( str(time.time()).split('.')[0] );
while _TRAIN_RATE > _LEARNINGS_GRADE:
_TRAIN_RATE = float(str(_TRAINER.train()));
#NetworkWriter.writeToFile(_NET, str(str(_TRAIN_RATE).split(":")[1])+"_"+_NET_NAME+".AUTO_SAVE.xml")
NetworkWriter.writeToFile(_NET, "_"+str(_TRAIN_RATE)+"_"+_NET_NAME+".xml")
print("Learn-Duration: "+str(time.strftime("%H:%M:%S", time.localtime(int( str(time.time()).split('.')[0] )-_SECS))));
_SECS = int( str(time.time()).split('.')[0] );
if _TRAIN_RATE < _LEARNINGS_GRADE:
print('Network ready.');
示例4: save
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def save(self, filename, desc=None):
NetworkWriter.writeToFile(self.net, filename + '.xml')
params = {'labels': self.labels,
'mean': self.mean.tolist(),
'std': self.std.tolist()}
with open(filename + '.yaml', 'w') as f:
f.write(yaml.dump(params, default_flow_style=False))
示例5: save
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def save(self, path):
"""
This function saves the neural network.
Args:
:param path (String): the path where the neural network is going to be saved.
"""
NetworkWriter.writeToFile(self.network, path)
示例6: training
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def training(d):
# net = buildNetwork(d.indim, 55, d.outdim, bias=True,recurrent=False, hiddenclass =SigmoidLayer , outclass = SoftmaxLayer)
net = FeedForwardNetwork()
inLayer = SigmoidLayer(d.indim)
hiddenLayer1 = SigmoidLayer(d.outdim)
hiddenLayer2 = SigmoidLayer(d.outdim)
outLayer = SigmoidLayer(d.outdim)
net.addInputModule(inLayer)
net.addModule(hiddenLayer1)
net.addModule(hiddenLayer2)
net.addOutputModule(outLayer)
in_to_hidden = FullConnection(inLayer, hiddenLayer1)
hidden_to_hidden = FullConnection(hiddenLayer1, hiddenLayer2)
hidden_to_out = FullConnection(hiddenLayer2, outLayer)
net.addConnection(in_to_hidden)
net.addConnection(hidden_to_hidden)
net.addConnection(hidden_to_out)
net.sortModules()
print net
t = BackpropTrainer(net, d, learningrate = 0.9,momentum=0.9, weightdecay=0.01, verbose = True)
t.trainUntilConvergence(continueEpochs=1200, maxEpochs=1000)
NetworkWriter.writeToFile(net, 'myNetwork'+str(time.time())+'.xml')
return t
示例7: _InitNet
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def _InitNet(self):
# -----------------------------------------------------------------------
self._pr_line();
print("| _InitNet(self): \n");
start_time = time.time();
# -----------------------------------------------------------------------
if self._NET_NAME:
# -----------------------------------------------------------------------
self._SDS = SupervisedDataSet(900, 52);
if self._NET_NEW:
print('| Bulding new NET: '+self._NET_NAME)
self._NET = buildNetwork(self._SDS.indim, self._NET_HIDDEN, self._SDS.outdim, bias=True); #,hiddenclass=TanhLayer)
self._SaveNET();
else:
print('| Reading NET from: '+self._NET_NAME)
self._NET = NetworkReader.readFrom(self._NET_NAME)
# -----------------------------------------------------------------------
print('| Making AutoBAK: '+str(self._MK_AUTO_BAK))
if self._MK_AUTO_BAK:
NetworkWriter.writeToFile(self._NET, self._NET_NAME+".AUTO_BAK.xml");
# -----------------------------------------------------------------------
print("| Done in: "+str(time.time()-start_time)+'sec');
# -----------------------------------------------------------------------
else:
print('| Unknown NET name: >|'+self._NET_NAME+'|<')
exit();
示例8: nntester
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def nntester(tx, ty, rx, ry, iterations):
"""
builds, tests, and graphs a neural network over a series of trials as it is
constructed
"""
resultst = []
resultsr = []
positions = range(iterations)
network = buildNetwork(100, 50, 1, bias=True)
ds = ClassificationDataSet(100,1, class_labels=["valley", "hill"])
for i in xrange(len(tx)):
ds.addSample(tx[i], [ty[i]])
trainer = BackpropTrainer(network, ds, learningrate=0.01)
for i in positions:
print trainer.train()
resultst.append(sum((np.array([round(network.activate(test)) for test in tx]) - ty)**2)/float(len(ty)))
resultsr.append(sum((np.array([round(network.activate(test)) for test in rx]) - ry)**2)/float(len(ry)))
print i, resultst[i], resultsr[i]
NetworkWriter.writeToFile(network, "network.xml")
plt.plot(positions, resultst, 'ro', positions, resultsr, 'bo')
plt.axis([0, iterations, 0, 1])
plt.ylabel("Percent Error")
plt.xlabel("Network Epoch")
plt.title("Neural Network Error")
plt.savefig('3Lnn.png', dpi=300)
示例9: train
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def train(self, network, valid_bp, path):
"""
Train until convergence, stopping the training when the training
doesn't reduce the validation error after 1000 continuous epochs
:param network: model
:type network: NeuralNetwork.NeuralNetwork
:param valid_bp: Validation set
:type valid_bp: SupervisedDataSet
:param path: Path where to save the trained model
:type path: str
:return: None
:rtype: None
"""
epochs = 0
continue_epochs = 0
# best_epoch = 0
NetworkWriter.writeToFile(network.network, path)
min_error = network.valid(valid_bp)
while True:
train_error = self.trainer.train()
valid_error = network.valid(valid_bp)
if valid_error < min_error:
min_error = valid_error
# best_epoch = epochs
NetworkWriter.writeToFile(network.network, path)
continue_epochs = 0
self.training_errors.append(train_error)
self.validation_errors.append(valid_error)
epochs += 1
continue_epochs += 1
# print str(epochs) + " " + str(continue_epochs) + " " + str(best_epoch)
if continue_epochs > 1000:
break
示例10: process_symbol
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def process_symbol(net, symbol):
print "processing ", symbol
#zuerst train_data prüfen, wenn keine Trainingsdaten da sind, dann brauchen wir nicht weitermachen
train_data = load(symbol+'.train')
if (len(train_data) == 0):
print "--no training data, skip", symbol
return
print "-traing data loaded"
data = load_stockdata(symbol)
if (len(data) == 0):
print "--no data, skip", symbol
return
print "-stock data loaded"
settings = load_settings(symbol,data)
if(len(settings) == 0):
print "--no settings, skip", symbol
return
print "-settings loaded"
#jetzt sind alle Daten vorhanden
ds = build_dataset(data, train_data, settings)
print "-train"
trainer = BackpropTrainer(net, ds)
trainer.trainEpochs(epochs)
print "-saving network"
NetworkWriter.writeToFile(net, 'network.xml')
return net
示例11: entrenarSomnolencia
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def entrenarSomnolencia(red):
#Se inicializa el dataset
ds = SupervisedDataSet(4096,1)
"""Se crea el dataset, para ello procesamos cada una de las imagenes obteniendo los rostros,
luego se le asignan los valores deseados del resultado la red neuronal."""
print "Somnolencia - cara"
for i,c in enumerate(os.listdir(os.path.dirname('/home/taberu/Imágenes/img_tesis/somnoliento/'))):
try:
im = cv2.imread('/home/taberu/Imágenes/img_tesis/somnoliento/'+c)
pim = pi.procesarImagen(im)
cara = d.deteccionFacial(pim)
if cara == None:
print "No hay cara"
else:
print i
ds.appendLinked(cara.flatten(),10)
except:
pass
trainer = BackpropTrainer(red, ds)
print "Entrenando hasta converger"
trainer.trainUntilConvergence()
NetworkWriter.writeToFile(red, 'rna_somnolencia.xml')
示例12: saveToFile
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def saveToFile(self):
if self.net is not None:
if self.major:
NetworkWriter.writeToFile(self.net, TRAINED_DATA_FILEPATH_MAJOR)
else:
NetworkWriter.writeToFile(self.net, TRAINED_DATA_FILEPATH_MINOR)
else:
print "Cannot save nothing"
示例13: main
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def main():
#agent1 = SimpleMLPMarioAgent(2)
#agent1 = MLPMarioAgent(4)
#agent1 = MdrnnAgent()
agent1 = SimpleMdrnnAgent()
print agent1.name
NetworkWriter.writeToFile(agent1.module, "../temp/MarioNetwork-"+agent1.name+".xml")
f = combinedScore(agent1)
print "\nTotal:", f
示例14: trainNetwork
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def trainNetwork(net, sample_list, validate_list, net_filename, max_epochs=5500, min_epochs=300):
count_input_samples = len(sample_list)
count_outputs = len(validate_list)
ds = SupervisedDataSet(count_input_samples, count_outputs)
ds.addSample(sample_list, validate_list)
trainer = RPropMinusTrainer(net, verbose=True)
trainer.setData(ds)
trainer.trainUntilConvergence(maxEpochs=max_epochs, continueEpochs=min_epochs)
NetworkWriter.writeToFile(net, net_filename)
return net
示例15: nn
# 需要导入模块: from pybrain.tools.xml.networkwriter import NetworkWriter [as 别名]
# 或者: from pybrain.tools.xml.networkwriter.NetworkWriter import writeToFile [as 别名]
def nn(tx, ty, rx, ry, iterations):
network = buildNetwork(14, 5, 5, 1)
ds = ClassificationDataSet(14,1, class_labels=["<50K", ">=50K"])
for i in xrange(len(tx)):
ds.addSample(tx[i], [ty[i]])
trainer = BackpropTrainer(network, ds)
trainer.trainOnDataset(ds, iterations)
NetworkWriter.writeToFile(network, "network.xml")
results = sum((np.array([round(network.activate(test)) for test in rx]) - ry)**2)/float(len(ry))
return results