本文整理汇总了Python中pybrain.tools.shortcuts.buildNetwork函数的典型用法代码示例。如果您正苦于以下问题:Python buildNetwork函数的具体用法?Python buildNetwork怎么用?Python buildNetwork使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了buildNetwork函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, hidden, **args):
self.setArgs(**args)
if self.useSpecialInfo:
net = buildNetwork(self.inGridSize**2+2, hidden, self.usedActions, outclass = SigmoidLayer)
else:
net = buildNetwork(self.inGridSize**2, hidden, self.usedActions, outclass = SigmoidLayer)
ModuleMarioAgent.__init__(self, net)
示例2: __init__
def __init__(self, num_features, num_actions, indexOfAgent=None):
PHC_FA.__init__(self, num_features, num_actions, indexOfAgent)
self.linQ = buildNetwork(num_features + num_actions, (num_features + num_actions), 1, hiddenclass = SigmoidLayer, outclass = LinearLayer)
self.linPolicy = buildNetwork(num_features, (num_features + num_actions), num_actions, hiddenclass = SigmoidLayer,outclass = SigmoidLayer)
self.averagePolicy=[]
self.trainer4LinQ=BackpropTrainer(self.linQ,weightdecay=self.weightdecay)
self.trainer4LinPolicy=BackpropTrainer(self.linPolicy,weightdecay=self.weightdecay)
示例3: buildCustomNetwork
def buildCustomNetwork(self, hiddenLayers, train_faces):
myfnn = None
print "building network..."
if len(hiddenLayers) == 1:
myfnn = buildNetwork(
train_faces.indim,
hiddenLayers[0],
train_faces.outdim,
outclass=SoftmaxLayer
)
elif len(hiddenLayers) == 2:
myfnn = buildNetwork(
train_faces.indim,
hiddenLayers[0],
hiddenLayers[1],
train_faces.outdim,
outclass=SoftmaxLayer
)
elif len(hiddenLayers) == 3:
myfnn = buildNetwork(
train_faces.indim,
hiddenLayers[0],
hiddenLayers[1],
hiddenLayers[2],
train_faces.outdim,
outclass=SoftmaxLayer
)
return myfnn
示例4: __init__
def __init__(self, motion, memory, sonar, posture):
self.motionProxy = motion
self.memoryProxy = memory
self.sonarProxy = sonar
self.postureProxy = posture
self.useSensors = True
self.inputLength = 26+18
self.outputLength = 26
self.sonarProxy.subscribe("Closed-Loop Motor Babbling") #Start the sonor
self.set_stiffness(0.3)
self.net = buildNetwork(INPUTSIZE,HIDDENSIZE,OUTPUTSIZE)
#Hierarchical Control Networks
self.netH1 = buildNetwork(INPUTSIZE,HIDDENSIZE,OUTPUTSIZE)
self.netH2 = buildNetwork(INPUTSIZE,HIDDENSIZE,OUTPUTSIZE)
self.sMemory1 = np.array([1]*(INPUTSIZE + PREDICTSIZE))
self.sMemory2 = np.array([1]*(INPUTSIZE + PREDICTSIZE))
self.mMemory1 = np.array([0]*OUTPUTSIZE)
self.mMemory2 = np.array([0]*OUTPUTSIZE)
# Access global joint limits.
self.Body = motion.getLimits("Body")
self.bangles = [1] * 26
self.othersens = [2] * 18
self.sMemory = np.array([1]*(INPUTSIZE + PREDICTSIZE))
self.mMemory = np.array([0]*OUTPUTSIZE)
self.cl = curiosityLoop()
self.rand = Random()
self.rand.seed(int(time()))
#Initialize a model dictionary
self.models = dict()
示例5: reset
def reset(self, params, repetition):
print params
self.nDimInput = 3
self.inputEncoder = PassThroughEncoder()
if params['output_encoding'] == None:
self.outputEncoder = PassThroughEncoder()
self.nDimOutput = 1
elif params['output_encoding'] == 'likelihood':
self.outputEncoder = ScalarBucketEncoder()
self.nDimOutput = self.outputEncoder.encoder.n
if params['dataset'] == 'nyc_taxi' or params['dataset'] == 'nyc_taxi_perturb_baseline':
self.dataset = NYCTaxiDataset(params['dataset'])
else:
raise Exception("Dataset not found")
self.testCounter = 0
self.resets = []
self.iteration = 0
# initialize LSTM network
random.seed(6)
if params['output_encoding'] == None:
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outputbias=True, recurrent=True)
elif params['output_encoding'] == 'likelihood':
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outclass=SigmoidLayer, recurrent=True)
(self.networkInput, self.targetPrediction, self.trueData) = \
self.dataset.generateSequence(
prediction_nstep=params['prediction_nstep'],
output_encoding=params['output_encoding'])
示例6: buildFNN
def buildFNN(testData, trainData):
'''
Input: testing data object, training data object
Output: Prints details of best FNN
'''
accuracy=0
model = None
params = None
fnn = buildNetwork( trainData.indim, (trainData.indim + trainData.outdim)/2, trainData.outdim, hiddenclass=TanhLayer, outclass=SoftmaxLayer, bias='true' )
trainer = BackpropTrainer(fnn, dataset=trainData, momentum=0.1, verbose=False, weightdecay=0.01)
a=calculateANNaccuracy(fnn, trainData, testData, trainer)
if a>accuracy:
model=fnn
accuracy=a
params='''network = [Hidden Layer = TanhLayer; Hidden Layer Units= (Input+Output)Units/2; Output Layer = SoftmaxLayer]\n'''
fnn = buildNetwork( trainData.indim, trainData.indim, trainData.outdim, hiddenclass=TanhLayer, outclass=SoftmaxLayer, bias='true' )
trainer = BackpropTrainer(fnn, dataset=trainData, momentum=0.1, verbose=False, weightdecay=0.01)
a=calculateANNaccuracy(fnn, trainData, testData, trainer)
if a>accuracy:
model=fnn
accuracy=a
params='''network = [Hidden Layer = TanhLayer; Hidden Layer Units = Input Units; Output Layer = SoftmaxLayer]\n'''
fnn = buildNetwork( trainData.indim, (trainData.indim + trainData.outdim)/2, trainData.outdim, hiddenclass=TanhLayer, outclass=SigmoidLayer, bias='true' )
trainer = BackpropTrainer(fnn, dataset=trainData, momentum=0.1, verbose=False, weightdecay=0.01)
a=calculateANNaccuracy(fnn, trainData, testData, trainer)
if a>accuracy:
model=fnn
accuracy=a
params='''network = [Hidden Layer = TanhLayer; Hidden Layer Units = (Input+Output)Units/2; Output Layer = SigmoidLayer]\n'''
fnn = buildNetwork( trainData.indim, (trainData.indim + trainData.outdim)/2, trainData.outdim, hiddenclass=TanhLayer, outclass=SigmoidLayer, bias='true' )
trainer = BackpropTrainer(fnn, dataset=trainData, momentum=0.1, verbose=False, weightdecay=0.01)
a=calculateANNaccuracy(fnn, trainData, testData, trainer)
if a>accuracy:
model=fnn
accuracy=a
params='''network = [Hidden Layer = TanhLayer; Hidden Layer Units = Input Units; Output Layer = SigmoidLayer]\n'''
fnn = buildNetwork( trainData.indim, (trainData.indim + trainData.outdim)/2, (trainData.indim + trainData.outdim)/2, trainData.outdim, hiddenclass=TanhLayer, outclass=SoftmaxLayer, bias='true' )
trainer = BackpropTrainer(fnn, dataset=trainData, momentum=0.1, verbose=False, weightdecay=0.01)
a=calculateANNaccuracy(fnn, trainData, testData, trainer)
if a>accuracy:
model=fnn
accuracy=a
params='''network = [TWO (2) Hidden Layers = TanhLayer; Hidden Layer Units = (Input+Output)Units/2; Output Layer = SoftmaxLayer]\n'''
print '\nThe best model had '+str(accuracy)+'% accuracy and used the parameters:\n'+params+'\n'
示例7: __init__
def __init__(self, prev=5):
# timsig beat, timsig denom, prev + curr dur/freq, prev 3 chords, bass note
self.t_ds = SupervisedDataSet((prev+1) * 2 + 4, 2)
self.t_net = buildNetwork((prev+1) * 2 + 4, 50, 75, 25, 2)
self.t_freq_err = []
self.t_dur_err = []
self.b_ds = SupervisedDataSet((prev+1) * 2 + 4, 2)
self.b_net = buildNetwork((prev+1) * 2 + 4, 50, 75, 25, 2)
self.b_freq_err = []
self.b_dur_err = []
self.prev = prev
self.corpus = []
示例8: __init__
def __init__(self, array=None):
if array == None:
##self.net = [Network((18,18,1)) for i in range(9)]
##self.theta = [self.net[i].theta for i in range(9)]
self.net = buildNetwork(18, 18, 9)
self.theta = self.net.params
else:
##self.theta = array
##self.net = [Network((18,18,1),self.theta[i]) for i in range(9)]
self.theta = array
self.net = buildNetwork(18, 18, 9)
self.net._params = self.theta
示例9: reset
def reset(self):
FA.reset(self)
# self.network = buildNetwork(self.indim, 2*(self.indim+self.outdim), self.outdim)
self.network = buildNetwork(self.indim, self.outdim, bias=True)
self.network._setParameters(random.normal(0, 0.1, self.network.params.shape))
self.pybdataset = SupervisedDataSet(self.indim, self.outdim)
示例10: train_net
def train_net(self,training_times_input=100,num_neroun=200,learning_rate_input=0.1,weight_decay=0.1,momentum_in = 0,verbose_input=True):
'''
The main function to train the network
'''
print self.trndata['input'].shape
raw_input()
self.network=buildNetwork(self.trndata.indim,
num_neroun,self.trndata.outdim,
bias=True,
hiddenclass=SigmoidLayer,
outclass = LinearLayer)
self.trainer=BackpropTrainer(self.network,
dataset=self.trndata,
learningrate=learning_rate_input,
momentum=momentum_in,
verbose=True,
weightdecay=weight_decay )
for iter in range(training_times_input):
print "Training", iter+1,"times"
self.trainer.trainEpochs(1)
trn_error = self._net_performance(self.network, self.trndata)
tst_error = self._net_performance(self.network, self.tstdata)
print "the trn error is: ", trn_error
print "the test error is: ",tst_error
'''prediction on all data:'''
示例11: run
def run(self, fold, X_train, y_train, X_test, y_test):
DS_train, DS_test = ClassificationData.convert_to_DS(
X_train,
y_train,
X_test,
y_test)
NHiddenUnits = self.__get_best_hu(DS_train)
fnn = buildNetwork(
DS_train.indim,
NHiddenUnits,
DS_train.outdim,
outclass=SoftmaxLayer,
bias=True)
trainer = BackpropTrainer(
fnn,
dataset=DS_train,
momentum=0.1,
verbose=False,
weightdecay=0.01)
trainer.trainEpochs(self.epochs)
tstresult = percentError(
trainer.testOnClassData(dataset=DS_test),
DS_test['class'])
print "NN fold: %4d" % fold, "; test error: %5.2f%%" % tstresult
return tstresult / 100.0
示例12: neuralNetwork_eval_func
def neuralNetwork_eval_func(self, chromosome):
node_num, learning_rate, window_size = self.decode_chromosome(chromosome)
if self.check_log(node_num, learning_rate, window_size):
return self.get_means_from_log(node_num, learning_rate, window_size)[0]
folded_dataset = self.create_folded_dataset(window_size)
indim = 21 * (2 * window_size + 1)
mean_AUC = 0
mean_decision_value = 0
mean_mcc = 0
sample_size_over_thousand_flag = False
for test_fold in xrange(self.fold):
test_labels, test_dataset, train_labels, train_dataset = folded_dataset.get_test_and_training_dataset(test_fold)
if len(test_labels) + len(train_labels) > 1000:
sample_size_over_thousand_flag = True
ds = SupervisedDataSet(indim, 1)
for i in xrange(len(train_labels)):
ds.appendLinked(train_dataset[i], [train_labels[i]])
net = buildNetwork(indim, node_num, 1, outclass=SigmoidLayer, bias=True)
trainer = BackpropTrainer(net, ds, learningrate=learning_rate)
trainer.trainUntilConvergence(maxEpochs=self.maxEpochs_for_trainer)
decision_values = [net.activate(test_dataset[i]) for i in xrange(len(test_labels))]
decision_values = map(lambda x: x[0], decision_values)
AUC, decision_value_and_max_mcc = validate_performance.calculate_AUC(decision_values, test_labels)
mean_AUC += AUC
mean_decision_value += decision_value_and_max_mcc[0]
mean_mcc += decision_value_and_max_mcc[1]
if sample_size_over_thousand_flag:
break
if not sample_size_over_thousand_flag:
mean_AUC /= self.fold
mean_decision_value /= self.fold
mean_mcc /= self.fold
self.write_log(node_num, learning_rate, window_size, mean_AUC, mean_decision_value, mean_mcc)
self.add_log(node_num, learning_rate, window_size, mean_AUC, mean_decision_value, mean_mcc)
return mean_AUC
示例13: setUp
def setUp(self):
self.nn = buildNetwork(4,6,3, bias=False, hiddenclass=TanhLayer,
outclass=TanhLayer)
self.nn.sortModules()
self.in_to_hidden, = self.nn.connections[self.nn['in']]
self.hiddenAstroLayer = AstrocyteLayer(self.nn['hidden0'],
self.in_to_hidden)
示例14: createNN
def createNN(indim, hiddim, outdim):
nn = buildNetwork(indim, hiddim, outdim,
bias=False,
hiddenclass=TanhLayer,
outclass=TanhLayer)
nn.sortModules()
return nn
示例15: train
def train(data):
"""
See http://www.pybrain.org/docs/tutorial/fnn.html
Returns a neural network trained on the test data.
Parameters:
data - A ClassificationDataSet for training.
Should not include the test data.
"""
network = buildNetwork(
# This is where we specify the architecture of
# the network. We can play around with different
# parameters here.
# http://www.pybrain.org/docs/api/tools.html
data.indim, 5, data.outdim,
hiddenclass=SigmoidLayer,
outclass=SoftmaxLayer
)
# We can fiddle around with this guy's options as well.
# http://www.pybrain.org/docs/api/supervised/trainers.html
trainer = BackpropTrainer(network, dataset=data)
trainer.trainUntilConvergence(maxEpochs=20)
return network