本文整理汇总了Python中pybrain.datasets.SupervisedDataSet.saveToFile方法的典型用法代码示例。如果您正苦于以下问题:Python SupervisedDataSet.saveToFile方法的具体用法?Python SupervisedDataSet.saveToFile怎么用?Python SupervisedDataSet.saveToFile使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.datasets.SupervisedDataSet
的用法示例。
在下文中一共展示了SupervisedDataSet.saveToFile方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: buildDataSet
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
def buildDataSet(self, filename, dateList):
ds = SupervisedDataSet(self.historySize*2, 1)
# Hack because for some absurd reason the stocks close on weekends
for date in dateList:
# inputs - the last historySize of score and stock data
ds.addSample(self.getInputs(date), (self.targetTs.getVal(date),))
ds.saveToFile(filename)
return ds
示例2: create1OrderDataSet
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
def create1OrderDataSet():
lab_images = get_train_set(instance=False, number_of_instances=10)
ds = SupervisedDataSet(100, 1)
for i in range(len(lab_images)):
data = np.zeros((100))
for j in range(100):
data[j] = lab_images[i][0][j]
ds.addSample(data, lab_images[i][1])
print "creating dataset, iteration:",i,"of",len(lab_images)
ds.saveToFile(root.path() + '/res/dataset1')
return ds
示例3: constructDataset
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
def constructDataset():
ds = SupervisedDataSet(50,50)
for line in open("C:\Users\maxence\Documents\data.txt"):
input=normalizedDataset(line)
cipher = ceas.encipher(line)
#print cipher
output = normalizedDataset(cipher)
#print input
#print output
ds.addSample( input, output )
ds.saveToFile('C:\\Users\\maxence\\Documents\\ds.xml')
return ds
示例4: create2OrderDataSet
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
def create2OrderDataSet():
lab_images = get_train_set(instance=True)
ds = SupervisedDataSet(5150, 1)
for i in range(len(lab_images)):
data = np.zeros((5150))
for j in range(100):
data[j] = lab_images[i][0][j]
count = 100
for x1 in range(100):
for x2 in range(x1, 100):
# print count
data[count] = lab_images[i][0][x1]*lab_images[i][0][x2]
count += 1
ds.addSample(data, lab_images[i][1])
print "creating dataset, iteration:",i,"of",len(lab_images)
ds.saveToFile(root.path() + '/res/dataset2')
return ds
示例5: generateTrainingData
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
def generateTrainingData(size=10000, saveAfter = False):
"""
Creates a set of training data with 4-dimensioanal input and 2-dimensional output
with `size` samples
"""
np.random.seed()
data = SupervisedDataSet(4,2)
for i in xrange(1, int(size/2)):
[a, b] = np.random.random_integers(1, 100, 2)
[c, d] = np.random.random_integers(100, 500, 2)
data.addSample((a, b, c, d), (-1, 1))
for i in xrange(1, int(size/2)):
[a, b] = np.random.random_integers(100, 500, 2)
[c, d] = np.random.random_integers(1, 100, 2)
data.addSample((a, b, c, d), (1, -1))
if saveAfter:
data.saveToFile(root.path()+"/res/dataSet")
return data
示例6: save_data
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
def save_data(self,fName="./data/mydata"):
SupervisedDataSet.saveToFile(self.ds, fName)
示例7: storeBoards
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
def storeBoards():
ds = SupervisedDataSet(97,1)
for i in range(1000):
boardList=makeBoard()
ds.addSample(boardList, boardVal(boardList))
ds.saveToFile('SynapsemonPie/boards')
示例8: SupervisedDataSet
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
plt.ylim([0,5000])
plt.show()
######## Build training set and save to file ############
print "Saving to file..."
#PyBrain has some nice classes to do all this.
from pybrain.datasets import SupervisedDataSet
import numpy as np
DS = SupervisedDataSet(dict_size,1)
for m_list,target in [[spamlist,1],[hamlist,0]]:
for mail in m_list:
#each data point is a list (or vector) the size of the dictionary
wordvector=np.zeros(dict_size)
#now go through the email and put the occurrences of each word
#in it's respective spot (i.e. word_dict[word]) in the vector
for word in mail:
if word in word_dict:
wordvector[word_dict[word]] += 1
DS.appendLinked(np.log(wordvector+1) , [target]) #put word occurrences on a log scale
#TODO: use MySQL instead of csv
DS.saveToFile('dataset.csv')
print "Done."
示例9: print
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
DataSetCompleteWhitenClass = np.load("Data/DataSetCompleteWhitenClass.npy")
DataSetCompleteNorm = np.load("Data/DataSetCompleteNorm.npy")
DataSetCompleteNormClass = np.load("Data/DataSetCompleteNormClass.npy")
for data in DataSetCompleteRaw:
DSSuperRaw.appendLinked(data[0],data[1])
for data in DataSetCompleteRawClass:
DSClassRaw.addSample(data[0],data[1])
for data in DataSetCompleteWhiten:
DSSuperWhiten.appendLinked(data[0],data[1])
for data in DataSetCompleteWhitenClass:
DSClassWhiten.addSample(data[0],data[1])
for data in DataSetCompleteNorm:
DSSuperNorm.appendLinked(data[0],data[1])
for data in DataSetCompleteNormClass:
DSClassNorm.addSample(data[0],data[1])
DSSuperRaw.saveToFile("Data/DSSuperRaw")
DSClassRaw.saveToFile("Data/DSClassRaw")
DSSuperWhiten.saveToFile("Data/DSSuperWhiten")
DSClassWhiten.saveToFile("Data/DSClassWhiten")
DSSuperNorm.saveToFile("Data/DSSuperNorm")
DSClassNorm.saveToFile("Data/DSClassNorm")
# np.save("Data/DataSetCompleteWhiten.npy", DataSetCompleteRaw)
# print(np.argmin(tdata, axis=0))
# np.save("Data/DataSetCompleteWhitenClass.npy", DataSetCompleteWhiten)
# #DS.saveToFile("DataSetComplete")
示例10: ProcessImage
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
print filename
image_file='Images(Training)/A/'+ filename
colordata = ProcessImage(image_file, partition_size)
#webbrowser.open("pixels.png")
#raw_input()
dataset.addSample(colordata, (1, 0))
for filename in os.listdir("Images(Training)/B"):
print filename
image_file='Images(Training)/B/'+ filename
colordata = ProcessImage(image_file, partition_size)
#webbrowser.open("pixels.png")
#raw_input()
dataset.addSample(colordata, (0, 1))
dataset.saveToFile("dataset")
net = buildNetwork(partition_size*partition_size, 35, 8, 2)
epochs = int(raw_input("How many epochs do you want to train the network for?: "))
RunNet(net, dataset, epochs)
prompt = raw_input("Do you want to choose specific files?: ")
if (prompt == 'y'):
while 1 == 1:
file = raw_input("Filename: ")
weights = ActivateNet(ProcessImage("Images(Unclassified)/" + file, partition_size))
示例11: range
# 需要导入模块: from pybrain.datasets import SupervisedDataSet [as 别名]
# 或者: from pybrain.datasets.SupervisedDataSet import saveToFile [as 别名]
train_count += 100
print "Trains:", train_count
print "Error:", trainer.train()
print " "
print "Running movement loop..."
while True:
try:
for i in range(9):
trainer.train()
train_count += 1
print "Error:", trainer.train()
train_count += 1
except:
raise Exception
cm = round(Lobsang.sensors.distance(), -1) / 10
right_speed = net.activate([cm])
print "CM: %i, LS: %f, RS: %f" %(cm * 10, 0.0, right_speed)
#left_speed = round(left_speed)
right_speed = round(right_speed)
print "Speeds to motors (L, R): (", 0, ",", right_speed, ")"
print " "
Lobsang.wheels.both(right_speed)
except Exception as e:
Lobsang.quit()
print e
print "Halted after", loop_count, "loops and", train_count, "trainings."
ds.saveToFile("nndist.ds")
else:
Lobsang.quit()