本文整理汇总了Python中pyarrow.uint32函数的典型用法代码示例。如果您正苦于以下问题:Python uint32函数的具体用法?Python uint32怎么用?Python uint32使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了uint32函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_table_pickle
def test_table_pickle():
data = [
pa.chunked_array([[1, 2], [3, 4]], type=pa.uint32()),
pa.chunked_array([["some", "strings", None, ""]], type=pa.string()),
]
schema = pa.schema([pa.field('ints', pa.uint32()),
pa.field('strs', pa.string())],
metadata={b'foo': b'bar'})
table = pa.Table.from_arrays(data, schema=schema)
result = pickle.loads(pickle.dumps(table))
result._validate()
assert result.equals(table)
示例2: _from_jvm_int_type
def _from_jvm_int_type(jvm_type):
"""
Convert a JVM int type to its Python equivalent.
Parameters
----------
jvm_type: org.apache.arrow.vector.types.pojo.ArrowType$Int
Returns
-------
typ: pyarrow.DataType
"""
if jvm_type.isSigned:
if jvm_type.bitWidth == 8:
return pa.int8()
elif jvm_type.bitWidth == 16:
return pa.int16()
elif jvm_type.bitWidth == 32:
return pa.int32()
elif jvm_type.bitWidth == 64:
return pa.int64()
else:
if jvm_type.bitWidth == 8:
return pa.uint8()
elif jvm_type.bitWidth == 16:
return pa.uint16()
elif jvm_type.bitWidth == 32:
return pa.uint32()
elif jvm_type.bitWidth == 64:
return pa.uint64()
示例3: test_type_to_pandas_dtype
def test_type_to_pandas_dtype():
M8_ns = np.dtype('datetime64[ns]')
cases = [
(pa.null(), np.float64),
(pa.bool_(), np.bool_),
(pa.int8(), np.int8),
(pa.int16(), np.int16),
(pa.int32(), np.int32),
(pa.int64(), np.int64),
(pa.uint8(), np.uint8),
(pa.uint16(), np.uint16),
(pa.uint32(), np.uint32),
(pa.uint64(), np.uint64),
(pa.float16(), np.float16),
(pa.float32(), np.float32),
(pa.float64(), np.float64),
(pa.date32(), M8_ns),
(pa.date64(), M8_ns),
(pa.timestamp('ms'), M8_ns),
(pa.binary(), np.object_),
(pa.binary(12), np.object_),
(pa.string(), np.object_),
(pa.list_(pa.int8()), np.object_),
]
for arrow_type, numpy_type in cases:
assert arrow_type.to_pandas_dtype() == numpy_type
示例4: test_empty_cast
def test_empty_cast():
types = [
pa.null(),
pa.bool_(),
pa.int8(),
pa.int16(),
pa.int32(),
pa.int64(),
pa.uint8(),
pa.uint16(),
pa.uint32(),
pa.uint64(),
pa.float16(),
pa.float32(),
pa.float64(),
pa.date32(),
pa.date64(),
pa.binary(),
pa.binary(length=4),
pa.string(),
]
for (t1, t2) in itertools.product(types, types):
try:
# ARROW-4766: Ensure that supported types conversion don't segfault
# on empty arrays of common types
pa.array([], type=t1).cast(t2)
except pa.lib.ArrowNotImplementedError:
continue
示例5: dataframe_with_arrays
def dataframe_with_arrays(include_index=False):
"""
Dataframe with numpy arrays columns of every possible primtive type.
Returns
-------
df: pandas.DataFrame
schema: pyarrow.Schema
Arrow schema definition that is in line with the constructed df.
"""
dtypes = [('i1', pa.int8()), ('i2', pa.int16()),
('i4', pa.int32()), ('i8', pa.int64()),
('u1', pa.uint8()), ('u2', pa.uint16()),
('u4', pa.uint32()), ('u8', pa.uint64()),
('f4', pa.float32()), ('f8', pa.float64())]
arrays = OrderedDict()
fields = []
for dtype, arrow_dtype in dtypes:
fields.append(pa.field(dtype, pa.list_(arrow_dtype)))
arrays[dtype] = [
np.arange(10, dtype=dtype),
np.arange(5, dtype=dtype),
None,
np.arange(1, dtype=dtype)
]
fields.append(pa.field('str', pa.list_(pa.string())))
arrays['str'] = [
np.array([u"1", u"ä"], dtype="object"),
None,
np.array([u"1"], dtype="object"),
np.array([u"1", u"2", u"3"], dtype="object")
]
fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms'))))
arrays['datetime64'] = [
np.array(['2007-07-13T01:23:34.123456789',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ms]'),
None,
None,
np.array(['2007-07-13T02',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ms]'),
]
if include_index:
fields.append(pa.field('__index_level_0__', pa.int64()))
df = pd.DataFrame(arrays)
schema = pa.schema(fields)
return df, schema
示例6: test_bit_width
def test_bit_width():
for ty, expected in [(pa.bool_(), 1),
(pa.int8(), 8),
(pa.uint32(), 32),
(pa.float16(), 16),
(pa.decimal128(19, 4), 128),
(pa.binary(42), 42 * 8)]:
assert ty.bit_width == expected
for ty in [pa.binary(), pa.string(), pa.list_(pa.int16())]:
with pytest.raises(ValueError, match="fixed width"):
ty.bit_width
示例7: test_type_for_alias
def test_type_for_alias():
cases = [
('i1', pa.int8()),
('int8', pa.int8()),
('i2', pa.int16()),
('int16', pa.int16()),
('i4', pa.int32()),
('int32', pa.int32()),
('i8', pa.int64()),
('int64', pa.int64()),
('u1', pa.uint8()),
('uint8', pa.uint8()),
('u2', pa.uint16()),
('uint16', pa.uint16()),
('u4', pa.uint32()),
('uint32', pa.uint32()),
('u8', pa.uint64()),
('uint64', pa.uint64()),
('f4', pa.float32()),
('float32', pa.float32()),
('f8', pa.float64()),
('float64', pa.float64()),
('date32', pa.date32()),
('date64', pa.date64()),
('string', pa.string()),
('str', pa.string()),
('binary', pa.binary()),
('time32[s]', pa.time32('s')),
('time32[ms]', pa.time32('ms')),
('time64[us]', pa.time64('us')),
('time64[ns]', pa.time64('ns')),
('timestamp[s]', pa.timestamp('s')),
('timestamp[ms]', pa.timestamp('ms')),
('timestamp[us]', pa.timestamp('us')),
('timestamp[ns]', pa.timestamp('ns')),
]
for val, expected in cases:
assert pa.type_for_alias(val) == expected
示例8: test_nested_ndarray_different_dtypes
def test_nested_ndarray_different_dtypes():
data = [
np.array([1, 2, 3], dtype='int64'),
None,
np.array([4, 5, 6], dtype='uint32')
]
arr = pa.array(data)
expected = pa.array([[1, 2, 3], None, [4, 5, 6]],
type=pa.list_(pa.int64()))
assert arr.equals(expected)
t2 = pa.list_(pa.uint32())
arr2 = pa.array(data, type=t2)
expected2 = expected.cast(t2)
assert arr2.equals(expected2)
示例9: test_is_integer
def test_is_integer():
signed_ints = [pa.int8(), pa.int16(), pa.int32(), pa.int64()]
unsigned_ints = [pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()]
for t in signed_ints + unsigned_ints:
assert types.is_integer(t)
for t in signed_ints:
assert types.is_signed_integer(t)
assert not types.is_unsigned_integer(t)
for t in unsigned_ints:
assert types.is_unsigned_integer(t)
assert not types.is_signed_integer(t)
assert not types.is_integer(pa.float32())
assert not types.is_signed_integer(pa.float32())
示例10: test_integer_no_nulls
def test_integer_no_nulls(self):
data = {}
fields = []
numpy_dtypes = [('i1', A.int8()), ('i2', A.int16()),
('i4', A.int32()), ('i8', A.int64()),
('u1', A.uint8()), ('u2', A.uint16()),
('u4', A.uint32()), ('u8', A.uint64())]
num_values = 100
for dtype, arrow_dtype in numpy_dtypes:
info = np.iinfo(dtype)
values = np.random.randint(info.min,
min(info.max, np.iinfo('i8').max),
size=num_values)
data[dtype] = values.astype(dtype)
fields.append(A.Field.from_py(dtype, arrow_dtype))
df = pd.DataFrame(data)
schema = A.Schema.from_fields(fields)
self._check_pandas_roundtrip(df, expected_schema=schema)
示例11: test_from_numpy_dtype
def test_from_numpy_dtype():
cases = [
(np.dtype('bool'), pa.bool_()),
(np.dtype('int8'), pa.int8()),
(np.dtype('int16'), pa.int16()),
(np.dtype('int32'), pa.int32()),
(np.dtype('int64'), pa.int64()),
(np.dtype('uint8'), pa.uint8()),
(np.dtype('uint16'), pa.uint16()),
(np.dtype('uint32'), pa.uint32()),
(np.dtype('float16'), pa.float16()),
(np.dtype('float32'), pa.float32()),
(np.dtype('float64'), pa.float64()),
(np.dtype('U'), pa.string()),
(np.dtype('S'), pa.binary()),
(np.dtype('datetime64[s]'), pa.timestamp('s')),
(np.dtype('datetime64[ms]'), pa.timestamp('ms')),
(np.dtype('datetime64[us]'), pa.timestamp('us')),
(np.dtype('datetime64[ns]'), pa.timestamp('ns'))
]
for dt, pt in cases:
result = pa.from_numpy_dtype(dt)
assert result == pt
# Things convertible to numpy dtypes work
assert pa.from_numpy_dtype('U') == pa.string()
assert pa.from_numpy_dtype(np.unicode) == pa.string()
assert pa.from_numpy_dtype('int32') == pa.int32()
assert pa.from_numpy_dtype(bool) == pa.bool_()
with pytest.raises(NotImplementedError):
pa.from_numpy_dtype(np.dtype('O'))
with pytest.raises(TypeError):
pa.from_numpy_dtype('not_convertible_to_dtype')
示例12: test_integer_no_nulls
def test_integer_no_nulls(self):
data = OrderedDict()
fields = []
numpy_dtypes = [
('i1', pa.int8()), ('i2', pa.int16()),
('i4', pa.int32()), ('i8', pa.int64()),
('u1', pa.uint8()), ('u2', pa.uint16()),
('u4', pa.uint32()), ('u8', pa.uint64()),
('longlong', pa.int64()), ('ulonglong', pa.uint64())
]
num_values = 100
for dtype, arrow_dtype in numpy_dtypes:
info = np.iinfo(dtype)
values = np.random.randint(max(info.min, np.iinfo(np.int_).min),
min(info.max, np.iinfo(np.int_).max),
size=num_values)
data[dtype] = values.astype(dtype)
fields.append(pa.field(dtype, arrow_dtype))
df = pd.DataFrame(data)
schema = pa.schema(fields)
self._check_pandas_roundtrip(df, expected_schema=schema)
示例13:
null_type = st.just(pa.null())
bool_type = st.just(pa.bool_())
binary_type = st.just(pa.binary())
string_type = st.just(pa.string())
signed_integer_types = st.sampled_from([
pa.int8(),
pa.int16(),
pa.int32(),
pa.int64()
])
unsigned_integer_types = st.sampled_from([
pa.uint8(),
pa.uint16(),
pa.uint32(),
pa.uint64()
])
integer_types = st.one_of(signed_integer_types, unsigned_integer_types)
floating_types = st.sampled_from([
pa.float16(),
pa.float32(),
pa.float64()
])
decimal_type = st.builds(
pa.decimal128,
precision=st.integers(min_value=1, max_value=38),
scale=st.integers(min_value=1, max_value=38)
)
numeric_types = st.one_of(integer_types, floating_types, decimal_type)
示例14:
result = pickle.loads(pickle.dumps(array))
assert array.equals(result)
@pytest.mark.parametrize(
('type', 'expected'),
[
(pa.null(), 'empty'),
(pa.bool_(), 'bool'),
(pa.int8(), 'int8'),
(pa.int16(), 'int16'),
(pa.int32(), 'int32'),
(pa.int64(), 'int64'),
(pa.uint8(), 'uint8'),
(pa.uint16(), 'uint16'),
(pa.uint32(), 'uint32'),
(pa.uint64(), 'uint64'),
(pa.float16(), 'float16'),
(pa.float32(), 'float32'),
(pa.float64(), 'float64'),
(pa.date32(), 'date'),
(pa.date64(), 'date'),
(pa.binary(), 'bytes'),
(pa.binary(length=4), 'bytes'),
(pa.string(), 'unicode'),
(pa.list_(pa.list_(pa.int16())), 'list[list[int16]]'),
(pa.decimal128(18, 3), 'decimal'),
(pa.timestamp('ms'), 'datetime'),
(pa.timestamp('us', 'UTC'), 'datetimetz'),
(pa.time32('s'), 'time'),
(pa.time64('us'), 'time')
示例15: test_tensor_base_object
def test_tensor_base_object():
tensor = pa.Tensor.from_numpy(np.random.randn(10, 4))
n = sys.getrefcount(tensor)
array = tensor.to_numpy()
assert sys.getrefcount(tensor) == n + 1
@pytest.mark.parametrize('dtype_str,arrow_type', [
('i1', pa.int8()),
('i2', pa.int16()),
('i4', pa.int32()),
('i8', pa.int64()),
('u1', pa.uint8()),
('u2', pa.uint16()),
('u4', pa.uint32()),
('u8', pa.uint64()),
('f2', pa.float16()),
('f4', pa.float32()),
('f8', pa.float64())
])
def test_tensor_numpy_roundtrip(dtype_str, arrow_type):
dtype = np.dtype(dtype_str)
data = (100 * np.random.randn(10, 4)).astype(dtype)
tensor = pa.Tensor.from_numpy(data)
assert tensor.type == arrow_type
repr(tensor)
result = tensor.to_numpy()