本文整理汇总了Python中pyarrow.float64函数的典型用法代码示例。如果您正苦于以下问题:Python float64函数的具体用法?Python float64怎么用?Python float64使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了float64函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_type_to_pandas_dtype
def test_type_to_pandas_dtype():
M8_ns = np.dtype('datetime64[ns]')
cases = [
(pa.null(), np.float64),
(pa.bool_(), np.bool_),
(pa.int8(), np.int8),
(pa.int16(), np.int16),
(pa.int32(), np.int32),
(pa.int64(), np.int64),
(pa.uint8(), np.uint8),
(pa.uint16(), np.uint16),
(pa.uint32(), np.uint32),
(pa.uint64(), np.uint64),
(pa.float16(), np.float16),
(pa.float32(), np.float32),
(pa.float64(), np.float64),
(pa.date32(), M8_ns),
(pa.date64(), M8_ns),
(pa.timestamp('ms'), M8_ns),
(pa.binary(), np.object_),
(pa.binary(12), np.object_),
(pa.string(), np.object_),
(pa.list_(pa.int8()), np.object_),
]
for arrow_type, numpy_type in cases:
assert arrow_type.to_pandas_dtype() == numpy_type
示例2: test_sequence_numpy_double
def test_sequence_numpy_double(seq, np_scalar):
data = [np_scalar(1.5), np_scalar(1), None, np_scalar(2.5), None, None]
arr = pa.array(seq(data))
assert len(arr) == 6
assert arr.null_count == 3
assert arr.type == pa.float64()
assert arr.to_pylist() == data
示例3: test_empty_cast
def test_empty_cast():
types = [
pa.null(),
pa.bool_(),
pa.int8(),
pa.int16(),
pa.int32(),
pa.int64(),
pa.uint8(),
pa.uint16(),
pa.uint32(),
pa.uint64(),
pa.float16(),
pa.float32(),
pa.float64(),
pa.date32(),
pa.date64(),
pa.binary(),
pa.binary(length=4),
pa.string(),
]
for (t1, t2) in itertools.product(types, types):
try:
# ARROW-4766: Ensure that supported types conversion don't segfault
# on empty arrays of common types
pa.array([], type=t1).cast(t2)
except pa.lib.ArrowNotImplementedError:
continue
示例4: test_table_unsafe_casting
def test_table_unsafe_casting():
data = [
pa.array(range(5), type=pa.int64()),
pa.array([-10, -5, 0, 5, 10], type=pa.int32()),
pa.array([1.1, 2.2, 3.3, 4.4, 5.5], type=pa.float64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
table = pa.Table.from_arrays(data, names=tuple('abcd'))
expected_data = [
pa.array(range(5), type=pa.int32()),
pa.array([-10, -5, 0, 5, 10], type=pa.int16()),
pa.array([1, 2, 3, 4, 5], type=pa.int64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
expected_table = pa.Table.from_arrays(expected_data, names=tuple('abcd'))
target_schema = pa.schema([
pa.field('a', pa.int32()),
pa.field('b', pa.int16()),
pa.field('c', pa.int64()),
pa.field('d', pa.string())
])
with pytest.raises(pa.ArrowInvalid,
match='Floating point value truncated'):
table.cast(target_schema)
casted_table = table.cast(target_schema, safe=False)
assert casted_table.equals(expected_table)
示例5: test_cast_integers_safe
def test_cast_integers_safe():
safe_cases = [
(np.array([0, 1, 2, 3], dtype='i1'), 'int8',
np.array([0, 1, 2, 3], dtype='i4'), pa.int32()),
(np.array([0, 1, 2, 3], dtype='i1'), 'int8',
np.array([0, 1, 2, 3], dtype='u4'), pa.uint16()),
(np.array([0, 1, 2, 3], dtype='i1'), 'int8',
np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()),
(np.array([0, 1, 2, 3], dtype='i1'), 'int8',
np.array([0, 1, 2, 3], dtype='f8'), pa.float64())
]
for case in safe_cases:
_check_cast_case(case)
unsafe_cases = [
(np.array([50000], dtype='i4'), 'int32', 'int16'),
(np.array([70000], dtype='i4'), 'int32', 'uint16'),
(np.array([-1], dtype='i4'), 'int32', 'uint16'),
(np.array([50000], dtype='u2'), 'uint16', 'int16')
]
for in_data, in_type, out_type in unsafe_cases:
in_arr = pa.array(in_data, type=in_type)
with pytest.raises(pa.ArrowInvalid):
in_arr.cast(out_type)
示例6: test_float_nulls
def test_float_nulls(self):
num_values = 100
null_mask = np.random.randint(0, 10, size=num_values) < 3
dtypes = [('f4', pa.float32()), ('f8', pa.float64())]
names = ['f4', 'f8']
expected_cols = []
arrays = []
fields = []
for name, arrow_dtype in dtypes:
values = np.random.randn(num_values).astype(name)
arr = pa.array(values, from_pandas=True, mask=null_mask)
arrays.append(arr)
fields.append(pa.field(name, arrow_dtype))
values[null_mask] = np.nan
expected_cols.append(values)
ex_frame = pd.DataFrame(dict(zip(names, expected_cols)),
columns=names)
table = pa.Table.from_arrays(arrays, names)
assert table.schema.equals(pa.schema(fields))
result = table.to_pandas()
tm.assert_frame_equal(result, ex_frame)
示例7: test_table_safe_casting
def test_table_safe_casting():
data = [
pa.array(range(5), type=pa.int64()),
pa.array([-10, -5, 0, 5, 10], type=pa.int32()),
pa.array([1.0, 2.0, 3.0, 4.0, 5.0], type=pa.float64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
table = pa.Table.from_arrays(data, names=tuple('abcd'))
expected_data = [
pa.array(range(5), type=pa.int32()),
pa.array([-10, -5, 0, 5, 10], type=pa.int16()),
pa.array([1, 2, 3, 4, 5], type=pa.int64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
expected_table = pa.Table.from_arrays(expected_data, names=tuple('abcd'))
target_schema = pa.schema([
pa.field('a', pa.int32()),
pa.field('b', pa.int16()),
pa.field('c', pa.int64()),
pa.field('d', pa.string())
])
casted_table = table.cast(target_schema)
assert casted_table.equals(expected_table)
示例8: test_sequence_double
def test_sequence_double():
data = [1.5, 1., None, 2.5, None, None]
arr = pa.array(data)
assert len(arr) == 6
assert arr.null_count == 3
assert arr.type == pa.float64()
assert arr.to_pylist() == data
示例9: test_dictionary_type
def test_dictionary_type():
ty0 = pa.dictionary(pa.int32(), pa.string())
assert ty0.index_type == pa.int32()
assert ty0.value_type == pa.string()
assert ty0.ordered is False
ty1 = pa.dictionary(pa.int8(), pa.float64(), ordered=True)
assert ty1.index_type == pa.int8()
assert ty1.value_type == pa.float64()
assert ty1.ordered is True
# construct from non-arrow objects
ty2 = pa.dictionary('int8', 'string')
assert ty2.index_type == pa.int8()
assert ty2.value_type == pa.string()
assert ty2.ordered is False
示例10: test_orcfile_empty
def test_orcfile_empty():
from pyarrow import orc
f = orc.ORCFile(path_for_orc_example('TestOrcFile.emptyFile'))
table = f.read()
assert table.num_rows == 0
schema = table.schema
expected_schema = pa.schema([
('boolean1', pa.bool_()),
('byte1', pa.int8()),
('short1', pa.int16()),
('int1', pa.int32()),
('long1', pa.int64()),
('float1', pa.float32()),
('double1', pa.float64()),
('bytes1', pa.binary()),
('string1', pa.string()),
('middle', pa.struct([
('list', pa.list_(pa.struct([
('int1', pa.int32()),
('string1', pa.string()),
]))),
])),
('list', pa.list_(pa.struct([
('int1', pa.int32()),
('string1', pa.string()),
]))),
('map', pa.list_(pa.struct([
('key', pa.string()),
('value', pa.struct([
('int1', pa.int32()),
('string1', pa.string()),
])),
]))),
])
assert schema == expected_schema
示例11: test_double
def test_double(self):
data = [1.5, 1, None, 2.5, None, None]
arr = pa.from_pylist(data)
assert len(arr) == 6
assert arr.null_count == 3
assert arr.type == pa.float64()
assert arr.to_pylist() == data
示例12: test_float_object_nulls
def test_float_object_nulls(self):
arr = np.array([None, 1.5, np.float64(3.5)] * 5, dtype=object)
df = pd.DataFrame({'floats': arr})
expected = pd.DataFrame({'floats': pd.to_numeric(arr)})
field = pa.field('floats', pa.float64())
schema = pa.schema([field])
self._check_pandas_roundtrip(df, expected=expected,
expected_schema=schema)
示例13: do_get
def do_get(self, ticket):
data1 = [pa.array([-10, -5, 0, 5, 10], type=pa.int32())]
data2 = [pa.array([-10.0, -5.0, 0.0, 5.0, 10.0], type=pa.float64())]
assert data1.type != data2.type
table1 = pa.Table.from_arrays(data1, names=['a'])
table2 = pa.Table.from_arrays(data2, names=['a'])
assert table1.schema == self.schema
return flight.GeneratorStream(self.schema, [table1, table2])
示例14: test_field_flatten
def test_field_flatten():
f0 = pa.field('foo', pa.int32()).add_metadata({b'foo': b'bar'})
assert f0.flatten() == [f0]
f1 = pa.field('bar', pa.float64(), nullable=False)
ff = pa.field('ff', pa.struct([f0, f1]), nullable=False)
assert ff.flatten() == [
pa.field('ff.foo', pa.int32()).add_metadata({b'foo': b'bar'}),
pa.field('ff.bar', pa.float64(), nullable=False)] # XXX
# Nullable parent makes flattened child nullable
ff = pa.field('ff', pa.struct([f0, f1]))
assert ff.flatten() == [
pa.field('ff.foo', pa.int32()).add_metadata({b'foo': b'bar'}),
pa.field('ff.bar', pa.float64())]
fff = pa.field('fff', pa.struct([ff]))
assert fff.flatten() == [pa.field('fff.ff', pa.struct([f0, f1]))]
示例15: test_all_nulls_cast_numeric
def test_all_nulls_cast_numeric(self):
arr = np.array([None], dtype=object)
def _check_type(t):
a2 = pa.array(arr, type=t)
assert a2.type == t
assert a2[0].as_py() is None
_check_type(pa.int32())
_check_type(pa.float64())