当前位置: 首页>>代码示例>>Python>>正文


Python pyarrow.float32函数代码示例

本文整理汇总了Python中pyarrow.float32函数的典型用法代码示例。如果您正苦于以下问题:Python float32函数的具体用法?Python float32怎么用?Python float32使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了float32函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_struct_array_field

def test_struct_array_field():
    ty = pa.struct([pa.field('x', pa.int16()),
                    pa.field('y', pa.float32())])
    a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)

    x0 = a.field(0)
    y0 = a.field(1)
    x1 = a.field(-2)
    y1 = a.field(-1)
    x2 = a.field('x')
    y2 = a.field('y')

    assert isinstance(x0, pa.lib.Int16Array)
    assert isinstance(y1, pa.lib.FloatArray)
    assert x0.equals(pa.array([1, 3, 5], type=pa.int16()))
    assert y0.equals(pa.array([2.5, 4.5, 6.5], type=pa.float32()))
    assert x0.equals(x1)
    assert x0.equals(x2)
    assert y0.equals(y1)
    assert y0.equals(y2)

    for invalid_index in [None, pa.int16()]:
        with pytest.raises(TypeError):
            a.field(invalid_index)

    for invalid_index in [3, -3]:
        with pytest.raises(IndexError):
            a.field(invalid_index)

    for invalid_name in ['z', '']:
        with pytest.raises(KeyError):
            a.field(invalid_name)
开发者ID:emkornfield,项目名称:arrow,代码行数:32,代码来源:test_array.py

示例2: test_convert_options

def test_convert_options():
    cls = ConvertOptions
    opts = cls()

    assert opts.check_utf8 is True
    opts.check_utf8 = False
    assert opts.check_utf8 is False

    assert opts.strings_can_be_null is False
    opts.strings_can_be_null = True
    assert opts.strings_can_be_null is True

    assert opts.column_types == {}
    # Pass column_types as mapping
    opts.column_types = {'b': pa.int16(), 'c': pa.float32()}
    assert opts.column_types == {'b': pa.int16(), 'c': pa.float32()}
    opts.column_types = {'v': 'int16', 'w': 'null'}
    assert opts.column_types == {'v': pa.int16(), 'w': pa.null()}
    # Pass column_types as schema
    schema = pa.schema([('a', pa.int32()), ('b', pa.string())])
    opts.column_types = schema
    assert opts.column_types == {'a': pa.int32(), 'b': pa.string()}
    # Pass column_types as sequence
    opts.column_types = [('x', pa.binary())]
    assert opts.column_types == {'x': pa.binary()}

    with pytest.raises(TypeError, match='DataType expected'):
        opts.column_types = {'a': None}
    with pytest.raises(TypeError):
        opts.column_types = 0

    assert isinstance(opts.null_values, list)
    assert '' in opts.null_values
    assert 'N/A' in opts.null_values
    opts.null_values = ['xxx', 'yyy']
    assert opts.null_values == ['xxx', 'yyy']

    assert isinstance(opts.true_values, list)
    opts.true_values = ['xxx', 'yyy']
    assert opts.true_values == ['xxx', 'yyy']

    assert isinstance(opts.false_values, list)
    opts.false_values = ['xxx', 'yyy']
    assert opts.false_values == ['xxx', 'yyy']

    opts = cls(check_utf8=False, column_types={'a': pa.null()},
               null_values=['N', 'nn'], true_values=['T', 'tt'],
               false_values=['F', 'ff'], strings_can_be_null=True)
    assert opts.check_utf8 is False
    assert opts.column_types == {'a': pa.null()}
    assert opts.null_values == ['N', 'nn']
    assert opts.false_values == ['F', 'ff']
    assert opts.true_values == ['T', 'tt']
    assert opts.strings_can_be_null is True
开发者ID:wesm,项目名称:arrow,代码行数:54,代码来源:test_csv.py

示例3: test_dictionary_type

def test_dictionary_type():
    ty0 = pa.dictionary(pa.int32(), pa.array(['a', 'b', 'c']))
    assert ty0.index_type == pa.int32()
    assert isinstance(ty0.dictionary, pa.Array)
    assert ty0.dictionary.to_pylist() == ['a', 'b', 'c']
    assert ty0.ordered is False

    ty1 = pa.dictionary(pa.float32(), pa.array([1.0, 2.0]), ordered=True)
    assert ty1.index_type == pa.float32()
    assert isinstance(ty0.dictionary, pa.Array)
    assert ty1.dictionary.to_pylist() == [1.0, 2.0]
    assert ty1.ordered is True
开发者ID:dremio,项目名称:arrow,代码行数:12,代码来源:test_types.py

示例4: test_column_flatten

def test_column_flatten():
    ty = pa.struct([pa.field('x', pa.int16()),
                    pa.field('y', pa.float32())])
    a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)
    col = pa.Column.from_array('foo', a)
    x, y = col.flatten()
    assert x == pa.column('foo.x', pa.array([1, 3, 5], type=pa.int16()))
    assert y == pa.column('foo.y', pa.array([2.5, 4.5, 6.5],
                                            type=pa.float32()))
    # Empty column
    a = pa.array([], type=ty)
    col = pa.Column.from_array('foo', a)
    x, y = col.flatten()
    assert x == pa.column('foo.x', pa.array([], type=pa.int16()))
    assert y == pa.column('foo.y', pa.array([], type=pa.float32()))
开发者ID:dremio,项目名称:arrow,代码行数:15,代码来源:test_table.py

示例5: test_float32_integer_coerce_representable_range

def test_float32_integer_coerce_representable_range():
    f32 = np.float32
    valid_values = [f32(1.5), 1 << 24, -(1 << 24)]
    invalid_values = [f32(1.5), (1 << 24) + 1]
    invalid_values2 = [f32(1.5), -((1 << 24) + 1)]

    # it works
    pa.array(valid_values, type=pa.float32())

    # it fails
    with pytest.raises(ValueError):
        pa.array(invalid_values, type=pa.float32())

    with pytest.raises(ValueError):
        pa.array(invalid_values2, type=pa.float32())
开发者ID:dremio,项目名称:arrow,代码行数:15,代码来源:test_convert_builtin.py

示例6: test_struct_array_slice

def test_struct_array_slice():
    # ARROW-2311: slicing nested arrays needs special care
    ty = pa.struct([pa.field('a', pa.int8()),
                    pa.field('b', pa.float32())])
    arr = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)
    assert arr[1:].to_pylist() == [{'a': 3, 'b': 4.5},
                                   {'a': 5, 'b': 6.5}]
开发者ID:CodingCat,项目名称:arrow,代码行数:7,代码来源:test_array.py

示例7: test_empty_cast

def test_empty_cast():
    types = [
        pa.null(),
        pa.bool_(),
        pa.int8(),
        pa.int16(),
        pa.int32(),
        pa.int64(),
        pa.uint8(),
        pa.uint16(),
        pa.uint32(),
        pa.uint64(),
        pa.float16(),
        pa.float32(),
        pa.float64(),
        pa.date32(),
        pa.date64(),
        pa.binary(),
        pa.binary(length=4),
        pa.string(),
    ]

    for (t1, t2) in itertools.product(types, types):
        try:
            # ARROW-4766: Ensure that supported types conversion don't segfault
            # on empty arrays of common types
            pa.array([], type=t1).cast(t2)
        except pa.lib.ArrowNotImplementedError:
            continue
开发者ID:emkornfield,项目名称:arrow,代码行数:29,代码来源:test_array.py

示例8: test_float_nulls

    def test_float_nulls(self):
        num_values = 100

        null_mask = np.random.randint(0, 10, size=num_values) < 3
        dtypes = [('f4', pa.float32()), ('f8', pa.float64())]
        names = ['f4', 'f8']
        expected_cols = []

        arrays = []
        fields = []
        for name, arrow_dtype in dtypes:
            values = np.random.randn(num_values).astype(name)

            arr = pa.array(values, from_pandas=True, mask=null_mask)
            arrays.append(arr)
            fields.append(pa.field(name, arrow_dtype))
            values[null_mask] = np.nan

            expected_cols.append(values)

        ex_frame = pd.DataFrame(dict(zip(names, expected_cols)),
                                columns=names)

        table = pa.Table.from_arrays(arrays, names)
        assert table.schema.equals(pa.schema(fields))
        result = table.to_pandas()
        tm.assert_frame_equal(result, ex_frame)
开发者ID:NonVolatileComputing,项目名称:arrow,代码行数:27,代码来源:test_convert_pandas.py

示例9: test_type_to_pandas_dtype

def test_type_to_pandas_dtype():
    M8_ns = np.dtype('datetime64[ns]')
    cases = [
        (pa.null(), np.float64),
        (pa.bool_(), np.bool_),
        (pa.int8(), np.int8),
        (pa.int16(), np.int16),
        (pa.int32(), np.int32),
        (pa.int64(), np.int64),
        (pa.uint8(), np.uint8),
        (pa.uint16(), np.uint16),
        (pa.uint32(), np.uint32),
        (pa.uint64(), np.uint64),
        (pa.float16(), np.float16),
        (pa.float32(), np.float32),
        (pa.float64(), np.float64),
        (pa.date32(), M8_ns),
        (pa.date64(), M8_ns),
        (pa.timestamp('ms'), M8_ns),
        (pa.binary(), np.object_),
        (pa.binary(12), np.object_),
        (pa.string(), np.object_),
        (pa.list_(pa.int8()), np.object_),
    ]
    for arrow_type, numpy_type in cases:
        assert arrow_type.to_pandas_dtype() == numpy_type
开发者ID:giantwhale,项目名称:arrow,代码行数:26,代码来源:test_schema.py

示例10: test_orcfile_empty

def test_orcfile_empty():
    from pyarrow import orc
    f = orc.ORCFile(path_for_orc_example('TestOrcFile.emptyFile'))
    table = f.read()
    assert table.num_rows == 0
    schema = table.schema
    expected_schema = pa.schema([
        ('boolean1', pa.bool_()),
        ('byte1', pa.int8()),
        ('short1', pa.int16()),
        ('int1', pa.int32()),
        ('long1', pa.int64()),
        ('float1', pa.float32()),
        ('double1', pa.float64()),
        ('bytes1', pa.binary()),
        ('string1', pa.string()),
        ('middle', pa.struct([
            ('list', pa.list_(pa.struct([
                ('int1', pa.int32()),
                ('string1', pa.string()),
                ]))),
            ])),
        ('list', pa.list_(pa.struct([
            ('int1', pa.int32()),
            ('string1', pa.string()),
            ]))),
        ('map', pa.list_(pa.struct([
            ('key', pa.string()),
            ('value', pa.struct([
                ('int1', pa.int32()),
                ('string1', pa.string()),
                ])),
            ]))),
        ])
    assert schema == expected_schema
开发者ID:dremio,项目名称:arrow,代码行数:35,代码来源:test_orc.py

示例11: test_is_integer

def test_is_integer():
    signed_ints = [pa.int8(), pa.int16(), pa.int32(), pa.int64()]
    unsigned_ints = [pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()]

    for t in signed_ints + unsigned_ints:
        assert types.is_integer(t)

    for t in signed_ints:
        assert types.is_signed_integer(t)
        assert not types.is_unsigned_integer(t)

    for t in unsigned_ints:
        assert types.is_unsigned_integer(t)
        assert not types.is_signed_integer(t)

    assert not types.is_integer(pa.float32())
    assert not types.is_signed_integer(pa.float32())
开发者ID:giantwhale,项目名称:arrow,代码行数:17,代码来源:test_types.py

示例12: test_table_flatten

def test_table_flatten():
    ty1 = pa.struct([pa.field('x', pa.int16()),
                     pa.field('y', pa.float32())])
    ty2 = pa.struct([pa.field('nest', ty1)])
    a = pa.array([(1, 2.5), (3, 4.5)], type=ty1)
    b = pa.array([((11, 12.5),), ((13, 14.5),)], type=ty2)
    c = pa.array([False, True], type=pa.bool_())

    table = pa.Table.from_arrays([a, b, c], names=['a', 'b', 'c'])
    t2 = table.flatten()
    t2._validate()
    expected = pa.Table.from_arrays([
        pa.array([1, 3], type=pa.int16()),
        pa.array([2.5, 4.5], type=pa.float32()),
        pa.array([(11, 12.5), (13, 14.5)], type=ty1),
        c],
        names=['a.x', 'a.y', 'b.nest', 'c'])
    assert t2.equals(expected)
开发者ID:dremio,项目名称:arrow,代码行数:18,代码来源:test_table.py

示例13: test_mixed_sequence_errors

def test_mixed_sequence_errors():
    with pytest.raises(ValueError, match="tried to convert to boolean"):
        pa.array([True, 'foo'], type=pa.bool_())

    with pytest.raises(ValueError, match="tried to convert to float32"):
        pa.array([1.5, 'foo'], type=pa.float32())

    with pytest.raises(ValueError, match="tried to convert to double"):
        pa.array([1.5, 'foo'])
开发者ID:dremio,项目名称:arrow,代码行数:9,代码来源:test_convert_builtin.py

示例14: dataframe_with_arrays

def dataframe_with_arrays(include_index=False):
    """
    Dataframe with numpy arrays columns of every possible primtive type.

    Returns
    -------
    df: pandas.DataFrame
    schema: pyarrow.Schema
        Arrow schema definition that is in line with the constructed df.
    """
    dtypes = [('i1', pa.int8()), ('i2', pa.int16()),
              ('i4', pa.int32()), ('i8', pa.int64()),
              ('u1', pa.uint8()), ('u2', pa.uint16()),
              ('u4', pa.uint32()), ('u8', pa.uint64()),
              ('f4', pa.float32()), ('f8', pa.float64())]

    arrays = OrderedDict()
    fields = []
    for dtype, arrow_dtype in dtypes:
        fields.append(pa.field(dtype, pa.list_(arrow_dtype)))
        arrays[dtype] = [
            np.arange(10, dtype=dtype),
            np.arange(5, dtype=dtype),
            None,
            np.arange(1, dtype=dtype)
        ]

    fields.append(pa.field('str', pa.list_(pa.string())))
    arrays['str'] = [
        np.array([u"1", u"ä"], dtype="object"),
        None,
        np.array([u"1"], dtype="object"),
        np.array([u"1", u"2", u"3"], dtype="object")
    ]

    fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms'))))
    arrays['datetime64'] = [
        np.array(['2007-07-13T01:23:34.123456789',
                  None,
                  '2010-08-13T05:46:57.437699912'],
                 dtype='datetime64[ms]'),
        None,
        None,
        np.array(['2007-07-13T02',
                  None,
                  '2010-08-13T05:46:57.437699912'],
                 dtype='datetime64[ms]'),
    ]

    if include_index:
        fields.append(pa.field('__index_level_0__', pa.int64()))
    df = pd.DataFrame(arrays)
    schema = pa.schema(fields)

    return df, schema
开发者ID:NonVolatileComputing,项目名称:arrow,代码行数:55,代码来源:pandas_examples.py

示例15: json_to_parquet

def json_to_parquet(data, output, schema):
    column_data = {}
    array_data = []

    for row in data:
        for column in schema.names:
            _col = column_data.get(column, [])
            _col.append(row.get(column))
            column_data[column] = _col

    for column in schema:
        _col = column_data.get(column.name)
        if isinstance(column.type, pa.lib.TimestampType):
            _converted_col = []
            for t in _col:
                try:
                    _converted_col.append(pd.to_datetime(t))
                except pd._libs.tslib.OutOfBoundsDatetime:
                    _converted_col.append(pd.Timestamp.max)
            array_data.append(pa.Array.from_pandas(pd.to_datetime(_converted_col), type=pa.timestamp('ms')))
        # Float types are ambiguous for conversions, need to specify the exact type
        elif column.type.id == pa.float64().id:
            array_data.append(pa.array(_col, type=pa.float64()))
        elif column.type.id == pa.float32().id:
            # Python doesn't have a native float32 type
            # and PyArrow cannot cast float64 -> float32
            _col = pd.to_numeric(_col, downcast='float')
            array_data.append(pa.Array.from_pandas(_col, type=pa.float32()))
        elif column.type.id == pa.int64().id:
            array_data.append(pa.array([int(ele) for ele in _col], type=pa.int64()))
        else:
            array_data.append(pa.array(_col, type=column.type))

    data = pa.RecordBatch.from_arrays(array_data, schema.names)

    try:
        table = pa.Table.from_batches(data)
    except TypeError:
        table = pa.Table.from_batches([data])

    pq.write_table(table, output, compression='SNAPPY', coerce_timestamps='ms')
开发者ID:liulnn,项目名称:python-utils,代码行数:41,代码来源:json_to_parquet.py


注:本文中的pyarrow.float32函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。