本文整理汇总了Python中pyNN.utility.assert_arrays_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_arrays_equal函数的具体用法?Python assert_arrays_equal怎么用?Python assert_arrays_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_arrays_equal函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test__make_compatible_v
def test__make_compatible_v():
r = recording.Recorder('v')
input_data = numpy.array([[0, 0.0, -65.0], [3, 0.0, -65.0],
[0, 0.1, -64.3], [3, 0.1, -65.1],
[0, 0.2, -63.7], [3, 0.2, -65.5]])
output_data = r._make_compatible(input_data) # voltage id
assert_arrays_equal(input_data[:,(2,0)], output_data)
示例2: test_infinite_space_with_3D_distances
def test_infinite_space_with_3D_distances(self):
s = space.Space()
self.assertEqual(s.distances(self.A, self.B), sqrt(3))
self.assertEqual(s.distances(self.C, self.B), sqrt(12))
self.assertArraysEqual(s.distances(self.A, self.ABCD), numpy.array([0.0, sqrt(3), sqrt(3), sqrt(29)]))
self.assertArraysEqual(s.distances(self.A, self.ABCD), s.distances(self.ABCD, self.A).T)
assert_arrays_equal(
s.distances(self.ABCD, self.ABCD),
numpy.array(
[
0.0,
sqrt(3),
sqrt(3),
sqrt(29),
sqrt(3),
0.0,
sqrt(12),
sqrt(14),
sqrt(3),
sqrt(12),
0.0,
sqrt(50.0),
sqrt(29),
sqrt(14),
sqrt(50.0),
0.0,
]
),
)
self.assertArraysEqual(s.distances(self.ABCD, self.A), numpy.array([0.0, sqrt(3), sqrt(3), sqrt(29)]))
示例3: test_get_positions
def test_get_positions():
p = MockPopulation(11, MockStandardCell)
ppos = numpy.random.uniform(size=(3,11))
p._positions = ppos
pv = common.PopulationView(parent=p,
selector=slice(3,9,2))
assert_arrays_equal(pv.positions, numpy.array([ppos[:,3], ppos[:,5], ppos[:,7]]).T)
示例4: test_really_simple1
def test_really_simple1(self):
A = numpy.ones((3,))
B = numpy.zeros((3,5))
D = connectors.DistanceMatrix(B, space.Space())
D.set_source(A)
assert_arrays_equal(D.as_array(),
numpy.sqrt(3*numpy.ones((5,), float)))
示例5: test_reset_recording
def test_reset_recording(sim):
"""
Check that record(None) resets the list of things to record.
This test injects different levels of current into two neurons. In the
first run, we record one of the neurons, in the second we record the other.
The main point is to check that the first neuron is not recorded in the
second run.
"""
sim.setup()
p = sim.Population(7, sim.IF_cond_exp())
p[3].i_offset = 0.1
p[4].i_offset = 0.2
p[3:4].record('v')
sim.run(10.0)
sim.reset()
p.record(None)
p[4:5].record('v')
sim.run(10.0)
data = p.get_data()
sim.end()
ti = lambda i: data.segments[i].analogsignalarrays[0].times
assert_arrays_equal(ti(0), ti(1))
idx = lambda i: data.segments[i].analogsignalarrays[0].channel_index
assert idx(0) == [3]
assert idx(1) == [4]
vi = lambda i: data.segments[i].analogsignalarrays[0]
assert vi(0).shape == vi(1).shape == (101, 1)
assert vi(0)[0, 0] == vi(1)[0, 0] == p.initial_values['v'].evaluate(simplify=True)*pq.mV # the first value should be the same
assert not (vi(0)[1:, 0] == vi(1)[1:, 0]).any() # none of the others should be, because of different i_offset
示例6: test_columnwise_iteration_with_structured_array_and_mask
def test_columnwise_iteration_with_structured_array_and_mask():
input = numpy.arange(12).reshape((4,3))
m = LazyArray(input, shape=(4,3)) # 4 rows, 3 columns
mask = numpy.array([False, True, True])
cols = [col for col in m.by_column(mask=mask)]
assert_arrays_equal(cols[0], input[:,1])
assert_arrays_equal(cols[1], input[:,2])
示例7: test_apply_function_to_structured_array
def test_apply_function_to_structured_array():
f = lambda m: 2*m + 3
input = numpy.arange(12).reshape((4,3))
m0 = LazyArray(input, shape=(4,3))
m1 = f(m0)
assert isinstance(m1, larray)
assert_arrays_equal(m1.evaluate(simplify=True), input*2 + 3)
示例8: test_set_synaptic_parameters
def test_set_synaptic_parameters(sim):
sim.setup()
mpi_rank = sim.rank()
p1 = sim.Population(4, sim.IF_cond_exp())
p2 = sim.Population(2, sim.IF_cond_exp())
syn = sim.TsodyksMarkramSynapse(U=0.5, weight=0.123, delay=0.1)
prj = sim.Projection(p1, p2, sim.AllToAllConnector(), syn)
expected = numpy.array([
(0.0, 0.0, 0.123, 0.1, 0.5),
(0.0, 1.0, 0.123, 0.1, 0.5),
(1.0, 0.0, 0.123, 0.1, 0.5),
(1.0, 1.0, 0.123, 0.1, 0.5),
(2.0, 0.0, 0.123, 0.1, 0.5),
(2.0, 1.0, 0.123, 0.1, 0.5),
(3.0, 0.0, 0.123, 0.1, 0.5),
(3.0, 1.0, 0.123, 0.1, 0.5),
])
actual = numpy.array(prj.get(['weight', 'delay', 'U'], format='list'))
if mpi_rank == 0:
ind = numpy.lexsort((actual[:, 1], actual[:, 0]))
assert_arrays_equal(actual[ind], expected)
positional_weights = numpy.array([[0, 1], [2, 3], [4, 5], [6, 7]], dtype=float)
prj.set(weight=positional_weights)
expected = positional_weights
actual = prj.get('weight', format='array')
if mpi_rank == 0:
assert_arrays_equal(actual, expected)
u_list = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]
prj.set(U=u_list)
expected = numpy.array([[0.9, 0.8], [0.7, 0.6], [0.5, 0.4], [0.3, 0.2]])
actual = prj.get('U', format='array')
if mpi_rank == 0:
assert_arrays_equal(actual, expected)
f_delay = lambda d: 0.5+d
prj.set(delay=f_delay)
expected = numpy.array([[0.5, 1.5], [1.5, 0.5], [2.5, 1.5], [3.5, 2.5]])
actual = prj.get('delay', format='array')
if mpi_rank == 0:
assert_arrays_equal(actual, expected)
# final sanity check
expected = numpy.array([
(0.0, 0.0, 0.0, 0.5, 0.9),
(0.0, 1.0, 1.0, 1.5, 0.8),
(1.0, 0.0, 2.0, 1.5, 0.7),
(1.0, 1.0, 3.0, 0.5, 0.6),
(2.0, 0.0, 4.0, 2.5, 0.5),
(2.0, 1.0, 5.0, 1.5, 0.4),
(3.0, 0.0, 6.0, 3.5, 0.3),
(3.0, 1.0, 7.0, 2.5, 0.2),
])
actual = numpy.array(prj.get(['weight', 'delay', 'U'], format='list'))
if mpi_rank == 0:
ind = numpy.lexsort((actual[:, 1], actual[:, 0]))
assert_arrays_equal(actual[ind], expected)
示例9: test__record
def test__record():
p = MockPopulation()
p.recorders = {'v': Mock()}
p._record('v')
meth, args, kwargs = p.recorders['v'].method_calls[0]
id_arr, = args
assert_equal(meth, 'record')
assert_arrays_equal(id_arr, p.all_cells)
示例10: test_evaluate_with_functional_array
def test_evaluate_with_functional_array():
input = lambda i,j: 2*i + j
m = LazyArray(input, shape=(4,3))
assert_arrays_equal(m.evaluate(),
numpy.array([[0, 1, 2],
[2, 3, 4],
[4, 5, 6],
[6, 7, 8]]))
示例11: issue241
def issue241(sim):
spike_train1 = sim.Population(1, sim.SpikeSourcePoisson, {'rate' : [5], 'start' : [1000], 'duration': [1234]})
spike_train2 = sim.Population(2, sim.SpikeSourcePoisson, {'rate' : [5, 6], 'start' : [1000, 1001], 'duration': [1234, 2345]})
spike_train3 = sim.Population(1, sim.SpikeSourcePoisson, {'rate' : [5], 'start' : [1000], 'duration': 1234})
spike_train4 = sim.Population(1, sim.SpikeSourcePoisson, {'rate' : [5], 'start' : [1000]})
spike_train5 = sim.Population(2, sim.SpikeSourcePoisson, {'rate' : [5, 6], 'start' : [1000, 1001]})
assert_arrays_equal(spike_train2.get('duration'), numpy.array([1234, 2345]))
assert_equal(spike_train3.get(['rate', 'start', 'duration']), [5, 1000, 1234])
示例12: test_tset_with_array_values
def test_tset_with_array_values():
p = MockPopulation()
p._set_array = Mock()
spike_times = numpy.linspace(0.0, 1000.0, num=10*p.size).reshape((p.size,10))
p.tset("spike_times", spike_times)
call_args = p._set_array.call_args[1]['spike_times']
assert_equal(call_args.shape, spike_times[p._mask_local].shape)
assert_arrays_equal(call_args.flatten(),
spike_times[p._mask_local].flatten())
示例13: test_get__zero_offset
def test_get__zero_offset():
r = recording.Recorder('spikes')
fake_data = numpy.array([
(3, 12.3),
(4, 14.5),
(7, 19.8)
])
r._get = Mock(return_value=fake_data)
assert_arrays_equal(r.get(), fake_data)
示例14: test_sample
def test_sample():
orig_pv = populations.PopulationView
populations.PopulationView = Mock()
p = MockPopulation()
rng = Mock()
rng.permutation = Mock(return_value=numpy.array([7,4,8,12,0,3,9,1,2,11,5,10,6]))
pv = p.sample(5, rng=rng)
assert_arrays_equal(populations.PopulationView.call_args[0][1], numpy.array([7,4,8,12,0]))
populations.PopulationView = orig_pv
示例15: test_initialize_random_distribution
def test_initialize_random_distribution():
p = MockPopulation()
p.initial_values = {}
p._set_initial_value_array = Mock()
class MockRandomDistribution(random.RandomDistribution):
def next(self, n, mask_local):
return 42*numpy.ones(n)[mask_local]
p.initialize('v', MockRandomDistribution())
assert_arrays_equal(p.initial_values['v'].evaluate(simplify=True), 42*numpy.ones(p.local_size))