本文整理汇总了Python中pyNN.spiNNaker.setup函数的典型用法代码示例。如果您正苦于以下问题:Python setup函数的具体用法?Python setup怎么用?Python setup使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了setup函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setupModel
def setupModel(settings,params, dt,simTime,populationsInput, populationsNoiseSource, populationsRN,populationsPN,populationsAN,projectionsPNAN):
maxDelay = max([params['MAX_DELAY_RATECODE_TO_CLUSTER_RN'],params['MAX_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN']])
spynnaker.setup(timestep=dt,min_delay=1,max_delay=maxDelay)
rnSpikeInjectionPort = settings['RN_SPIKE_INJECTION_PORT']
rnSpikeInjectionPopLabel = settings['RN_SPIKE_INJECTION_POP_LABEL']
classActivationSpikeInjectionPort = settings['CLASS_ACTIVATION_SPIKE_INJECTION_PORT']
classActivationSpikeInjectionPopLabel = settings['CLASS_ACTIVATION_SPIKE_INJECTION_POP_LABEL']
learning = settings['LEARNING']
print 'Setting up input layer..'
numInjectionPops = setupLayerInput(params,rnSpikeInjectionPort,rnSpikeInjectionPopLabel, classActivationSpikeInjectionPort,classActivationSpikeInjectionPopLabel, populationsInput,learning)
print numInjectionPops , ' spikeInjection populations were needed to accomodate ', params['NUM_VR'], " VRs"
print 'Setting up noise source layer..'
setupLayerNoiseSource(params, simTime, populationsNoiseSource)
print 'Setting up RN layer..'
numInputPops = len(populationsInput)
injectionPops = populationsInput[1:len(populationsInput)]
numInjectionPops = len(injectionPops)
setupLayerRN(params,neuronModel, cell_params, injectionPops, populationsNoiseSource[0], populationsRN)
#setupLayerRN(params,neuronModel, cell_params, injectionPops, populationsRN)
print 'Setting up PN layer..'
setupLayerPN(params, neuronModel, cell_params, populationsRN, populationsPN)
print 'Setting up AN layer..'
setupLayerAN(params, settings, neuronModel, cell_params, populationsInput[0], populationsNoiseSource[0], populationsPN, populationsAN,learning,projectionsPNAN)
printModelConfigurationSummary(params, populationsInput, populationsNoiseSource, populationsRN, populationsPN, populationsAN)
开发者ID:alandiamond,项目名称:spinnaker-neuromorphic-classifier,代码行数:28,代码来源:Classifier_LiveSpikingInput.py
示例2: __init__
def __init__( self, time, num_neurons ):
threading.Thread.__init__( self )
p.setup( timestep=1.0, min_delay=1.0, max_delay=144.0 )
self.time = time
self.num_neurons = num_neurons
self.loop_connections = list()
self.weight_to_spike = 2.0
self.delay = 17
self.cell_params = {
'cm' : 0.25,
'i_offset' : 0.0,
'tau_m' : 20.0,
'tau_refrac': 2.0,
'tau_syn_E' : 5.0,
'tau_syn_I' : 5.0,
'v_reset' : -70.0,
'v_rest' : -65.0,
'v_thresh' : -50.0
}
self.injector_cell_params = {
'host_port_number' : 12345,
'host_ip_address' : "localhost",
'virtual_key' : 458752,
'prefix' : 7,
'prefix_type' : q.EIEIOPrefixType.UPPER_HALF_WORD
}
for i in range( 0, self.num_neurons - 1 ):
single_connection = ( i, ( ( i + 1 ) % self.num_neurons ), self.weight_to_spike, self.delay )
self.loop_connections.append( single_connection )
self.injection_connections = {
'pop1' : [( 0, 0, self.weight_to_spike, 1 )],
'pop2' : [( 1, 0, self.weight_to_spike, 1 )]
}
self.populations = {
# pop name num neurons neuron type cell parameters label
"injector" : p.Population( 2, q.ReverseIpTagMultiCastSource, self.injector_cell_params, label='spike_injector' ),
"pop1" : p.Population( self.num_neurons, p.IF_curr_exp, self.cell_params, label='pop1' ),
"pop2" : p.Population( self.num_neurons, p.IF_curr_exp, self.cell_params, label='pop2' ),
"pop3" : p.Population( self.num_neurons, p.IF_curr_exp, self.cell_params, label='pop3' )
}
self.projections = [
p.Projection( self.populations['pop1'], self.populations['pop1'], p.FromListConnector( self.loop_connections ) ),
p.Projection( self.populations['pop2'], self.populations['pop2'], p.FromListConnector( self.loop_connections ) ),
p.Projection( self.populations['pop2'], self.populations['pop3'], p.FromListConnector( self.loop_connections ) ),
p.Projection( self.populations['injector'], self.populations['pop1'], p.FromListConnector( self.injection_connections['pop1'] ) ),
p.Projection( self.populations['injector'], self.populations['pop2'], p.FromListConnector( self.injection_connections['pop2'] ) )
]
示例3: setupModel
def setupModel(settings,params, dt,simTime,populationsInput, populationsNoiseSource, populationsRN,populationsPN,populationsAN,projectionsPNAN):
maxDelay = max([params['MAX_DELAY_RATECODE_TO_CLUSTER_RN'],params['MAX_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN']])
spynnaker.setup(timestep=dt,min_delay=1,max_delay=maxDelay)
spikeSourceVrResponsePath = settings['SPIKE_SOURCE_VR_RESPONSE_PATH']
spikeSourceActiveClassPath = settings['SPIKE_SOURCE_ACTIVE_CLASS_PATH']
learning = settings['LEARNING']
setupLayerInput(params, spikeSourceVrResponsePath, spikeSourceActiveClassPath, populationsInput,learning)
setupLayerNoiseSource(params, simTime, populationsNoiseSource)
setupLayerRN(params,neuronModel, cell_params, populationsInput[0], populationsNoiseSource[0], populationsRN)
setupLayerPN(params, neuronModel, cell_params, populationsRN, populationsPN)
setupLayerAN(params, settings, neuronModel, cell_params, populationsInput[1], populationsNoiseSource[0], populationsPN, populationsAN,learning,projectionsPNAN)
printModelConfigurationSummary(params, populationsInput, populationsNoiseSource, populationsRN, populationsPN, populationsAN)
示例4: main
def main():
# setup timestep of simulation and minimum and maximum synaptic delays
setup(timestep=simulationTimestep, min_delay=minSynapseDelay, max_delay=maxSynapseDelay, threads=4)
# create a spike sources
retinaLeft = createSpikeSource("Retina Left")
retinaRight = createSpikeSource("Retina Right")
# create network and attach the spike sources
network = createCooperativeNetwork(retinaLeft=retinaLeft, retinaRight=retinaRight)
# run simulation for time in milliseconds
print "Simulation started..."
run(simulationTime)
print "Simulation ended."
# plot results
plotExperiment(retinaLeft, retinaRight, network)
# finalise program and simulation
end()
示例5: setupModel
def setupModel(
params,
settings,
dt,
simTime,
populationsInput,
populationsNoiseSource,
populationsRN,
populationsPN,
populationsAN,
projectionsPNAN,
):
maxDelay = max([params["MAX_DELAY_RATECODE_TO_CLUSTER_RN"], params["MAX_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN"]])
spynnaker.setup(timestep=dt, min_delay=1, max_delay=maxDelay)
setupLayerInput(params, settings, populationsInput)
setupLayerNoiseSource(params, simTime, populationsNoiseSource)
setupLayerRN(params, neuronModel, cell_params, populationsInput[0], populationsNoiseSource[0], populationsRN)
setupLayerPN(params, neuronModel, cell_params, populationsRN, populationsPN)
setupLayerAN(
params,
settings,
neuronModel,
cell_params,
populationsInput[1],
populationsNoiseSource[0],
populationsPN,
populationsAN,
projectionsPNAN,
)
printModelConfigurationSummary(
params, populationsInput, populationsNoiseSource, populationsRN, populationsPN, populationsAN
)
示例6: general_cell
LOGDEBUG = 1
LOGINFO = 2
LOGLEVEL = LOGINFO
#### DEFAULTS
tau_syn = 100 # default value
neurons_per_core = 100 # default value
#### COUNTERS
n_outs = 0 # output counter for placing NEF_out populations in chip 0,0
# Setting up the connection with the DB and the number of cells
spinn.setup(db_name = os.path.abspath('%s/nengo_model.sqlite' % pacman.BINARIES_DIRECTORY))
spinn.get_db().set_number_of_neurons_per_core('NEF_out_2d', neurons_per_core*2) # this will set one population per core
#spinn.get_db().set_number_of_neurons_per_core('IF_curr_exp_32', neurons_per_core) # this will set one population per core
spinn.get_db().set_number_of_neurons_per_core('IF_NEF_input_2d', neurons_per_core*2) # this will set one population per core
# PACMAN INTERFACES
class general_cell():
"""
PACMAN Interface class giving a cell type with parameters, class, size, label, id and mapping constraints
"""
def __init__(self, cellname):
self.__name__ = cellname
示例7:
return spike_times_1, spike_times_2
#millisecond*second*minutes*hour in a day
#runtime = 1000*60*60*24
runtime = 1000#*60*10 #10 min
stimtime = 500
weight_to_spike = 8.
timestep = 1.
min_delay = 1.
max_delay = 20.
sim.setup(timestep=timestep, min_delay = min_delay, max_delay = max_delay)
max_weight = 10.
min_weight = 0.0
a_plus = 0.1
a_minus = 0.12
tau_plus = 20.
tau_minus = 20.
num_exc = 800
num_inh = 200
total_neurons = num_exc + num_inh
max_conn_per_neuron = 100
conn_prob = 0.1#float(max_conn_per_neuron)/float(total_neurons)
cell_type = sim.IZK_curr_exp
示例8: range
#!/usr/bin/env python
import IPython
import pyNN.spiNNaker as p
#import pyNN.neuron as p
from pylab import *
from pyNN.utility import init_logging
from pyNN.utility import get_script_args
from pyNN.errors import RecordingError
spin_control = p.setup(timestep=0.1, min_delay=0.1, max_delay=4.0)
#init_logging("logfile", debug=True)
ifcell = p.Population(10, p.IF_cond_exp, { 'i_offset' : 0.1, 'tau_refrac' : 3.0,
'v_thresh' : -51.0, 'tau_syn_E' : 2.0,
'tau_syn_I': 5.0, 'v_reset' : -70.0,
'e_rev_E' : 0., 'e_rev_I' : -80.}, label = "myFinalCell_PLOT")
spike_sourceE = p.Population(10, p.SpikeSourceArray, {'spike_times': [float(i) for i in range(0,9000,100)]}, label = "mySourceE_PLOT")
spike_sourceI = p.Population(10, p.SpikeSourceArray, {'spike_times': [float(i) for i in range(1000,5000,50)]}, label = "mySourceI_PLOT")
connE = p.Projection(spike_sourceE, ifcell, p.AllToAllConnector(weights=1.0, delays=0.2), target='excitatory')
connI = p.Projection(spike_sourceI, ifcell, p.AllToAllConnector(weights=3.0, delays=0.2), target='inhibitory')
#p1 = Population(100, IF_curr_alpha, structure=space.Grid2D())
#prepop = p.Population(100 ,p.SpikeSourceArray,{'spike_times':[[i for i in arange(10,duration,100)], [i for i in arange(50,duration,100)]]*(nn/2)})
#prj2_1 = Projection(p2, p1, method=AllToAllConnector(), target='excitatory')
示例9: get_pops
import pyNN.spiNNaker as pynn
# helper function for populations
def get_pops(n_in_pop, n_used_neuronblocks=7):
l = []
model_type = pynn.IF_cond_exp
for _ in xrange(n_used_neuronblocks):
pop = pynn.Population(n_in_pop, model_type, params)
pop.record()
l.append(pop)
return l
pynn.setup(timestep=1.0)
duration = 1 * 30000 # ms
params = {
'cm': 0.2,
'v_reset': -70,
'v_rest': -50,
'v_thresh': -47,
'e_rev_I': -60,
'e_rev_E': -40,
}
n_in_pop = 12
示例10: neurons
Each population has 256 neurons (4 neurons x 64 channels).
Neurons in each population (ear) are numbered from 0 to 255, where::
id = ( channel * 4 ) + neuron
.. moduleauthor:: Francesco Galluppi, SpiNNaker Project, [email protected]
"""
from pyNN.utility import get_script_args
from pyNN.errors import RecordingError
import pyNN.spiNNaker as p
p.setup(timestep=1.0,min_delay=1.0,max_delay=10.0, db_name='cochlea_example.sqlite')
nNeurons = 4 * 64 # 4 neurons and 64 channels per ear
p.get_db().set_number_of_neurons_per_core('IF_curr_exp', nNeurons) # this will set 256 neurons per core
cell_params = { 'i_offset' : .1, 'tau_refrac' : 3.0, 'v_rest' : -65.0,
'v_thresh' : -51.0, 'tau_syn_E' : 2.0,
'tau_syn_I': 5.0, 'v_reset' : -70.0,
'e_rev_E' : 0., 'e_rev_I' : -80.}
left_cochlea_ear = p.Population(nNeurons, p.ProxyNeuron, {'x_source':254, 'y_source':254}, label='left_cochlea_ear')
left_cochlea_ear.set_mapping_constraint({'x':0, 'y':0})
left_cochlea_ear.record() # this should record spikes from the cochlea
示例11:
import pyNN.spiNNaker as p
import memory_for_parser as mem
import parse as parser
import get_text as sp
NUMBER_PEOPLE = 10
NUMBER_LOCS = 10
NUMBER_OBJS = 10
max_delay = 100.0
p.setup(timestep=1.0, min_delay = 1.0, max_delay = max_delay)
# parser.parse_no_run('spiNNaker', "daniel went to the bathroom. john went to the hallway. where is john?")
sent1 = sp.getSentence(parser.words, "Say your first assertion now")
sent2 = sp.getSentence(parser.words, "Say your second assertion now")
sent3 = sp.getSentence(parser.words, "Ask your question now")
parser.parse_no_run('spiNNaker', sent1+sent2+sent3)
[input_populations, state_populations, output_populations, projections] = mem.memory(NUMBER_PEOPLE, NUMBER_LOCS, NUMBER_OBJS)
cell_params_lif = {'cm' : 0.25, # nF
'i_offset' : 0.0,
'tau_m' : 20.0,
'tau_refrac': 2.0,
'tau_syn_E' : 5.0,
'tau_syn_I' : 5.0,
'v_reset' : -70.0,
示例12:
"""
Synfirechain-like example
Expected results in
.. figure:: ./examples/results/synfire_chain_lif.png
"""
#!/usr/bin/python
import pyNN.spiNNaker as p
import numpy, pylab
p.setup(timestep=1.0, min_delay = 1.0, max_delay = 8.0, db_name='synfire.sqlite')
n_pop = 16 # number of populations
nNeurons = 10 # number of neurons in each population
p.get_db().set_number_of_neurons_per_core('IF_curr_exp', nNeurons) # this will set one population per core
# random distributions
rng = p.NumpyRNG(seed=28374)
delay_distr = p.RandomDistribution('uniform', [1,10], rng=rng)
weight_distr = p.RandomDistribution('uniform', [0,2], rng=rng)
v_distr = p.RandomDistribution('uniform', [-55,-95], rng)
cell_params_lif_in = { 'tau_m' : 32,
'v_init' : -80,
'v_rest' : -75,
'v_reset' : -95,
示例13:
import pyNN.spiNNaker as sim
sim.setup()
p1 = sim.Population(3, sim.SpikeSourceArray, {"spike_times": [1.0, 2.0, 3.0]})
p2 = sim.Population(3, sim.SpikeSourceArray, {"spike_times": [[10.0], [20.0], [30.0]]})
p3 = sim.Population(4, sim.IF_cond_exp, {})
sim.Projection(p2, p3, sim.FromListConnector([
(0, 0, 0.1, 1.0), (1, 1, 0.1, 1.0), (2, 2, 0.1, 1.0)]))
#sim.Projection(p1, p3, sim.FromListConnector([(0, 3, 0.1, 1.0)])) # works if this line is added
sim.run(100.0)
示例14: get_pops
# helper function for populations
def get_pops(n_in_pop, n_used_neuronblocks=7):
l = []
model_type = pynn.IF_curr_exp
for _ in xrange(n_used_neuronblocks):
pop = pynn.Population(n_in_pop, model_type, params)
pop.record()
l.append(pop)
return l
pynn.setup(timestep=0.1)
duration = 1 * 3000 # ms
params = {"cm": 0.2, "v_reset": -70, "v_rest": -50, "v_thresh": -47}
n_in_pop = 12
# prepare populations
all_pops = []
all_pops.extend(get_pops(n_in_pop))
all_pops.extend(get_pops(n_in_pop))
# -> makes 14 population
# synaptic weight, must be tuned for spinnaker
w_exc = 0.25
示例15:
$ ./stdp_example
This example requires that the NeuroTools package is installed
(http://neuralensemble.org/trac/NeuroTools)
Authors : Catherine Wacongne < [email protected] >
Xavier Lagorce < [email protected] >
April 2013
"""
import pylab
import pyNN.spiNNaker as sim
# SpiNNaker setup
sim.setup(timestep=1.0, min_delay=1.0, max_delay=10.0)
# +-------------------------------------------------------------------+
# | General Parameters |
# +-------------------------------------------------------------------+
# Population parameters
model = sim.IF_curr_exp
cell_params = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,