当前位置: 首页>>代码示例>>Python>>正文


Python spiNNaker.end函数代码示例

本文整理汇总了Python中pyNN.spiNNaker.end函数的典型用法代码示例。如果您正苦于以下问题:Python end函数的具体用法?Python end怎么用?Python end使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了end函数的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

def main():
    # setup timestep of simulation and minimum and maximum synaptic delays
    setup(timestep=simulationTimestep, min_delay=minSynapseDelay, max_delay=maxSynapseDelay, threads=4)

    # create a spike sources
    retinaLeft = createSpikeSource("Retina Left")
    retinaRight = createSpikeSource("Retina Right")
    
    # create network and attach the spike sources 
    network = createCooperativeNetwork(retinaLeft=retinaLeft, retinaRight=retinaRight)
    
    # run simulation for time in milliseconds
    print "Simulation started..."
    run(simulationTime)                                            
    print "Simulation ended."
    
    # plot results  
    plotExperiment(retinaLeft, retinaRight, network)
    # finalise program and simulation
    end()
开发者ID:AMFtech,项目名称:StereoMatching,代码行数:20,代码来源:CooperativeNetwork.py

示例2: end

def end():
    spynnaker.end()
开发者ID:iulialexandra,项目名称:neuromorphic_odour_classifier,代码行数:2,代码来源:Classifier.py

示例3: len

    pylab.title('spikes')
    pylab.show()
else:
    print "No spikes received"

# Make some graphs

if v is not None:
    ticks = len(v) / nNeurons
    pylab.figure()
    pylab.xlabel('Time/ms')
    pylab.ylabel('v')
    pylab.title('v')
    for pos in range(0, nNeurons, 20):
        v_for_neuron = v[pos * ticks: (pos + 1) * ticks]
        pylab.plot([i[2] for i in v_for_neuron])
    pylab.show()

if gsyn is not None:
    ticks = len(gsyn) / nNeurons
    pylab.figure()
    pylab.xlabel('Time/ms')
    pylab.ylabel('gsyn')
    pylab.title('gsyn')
    for pos in range(0, nNeurons, 20):
        gsyn_for_neuron = gsyn[pos * ticks: (pos + 1) * ticks]
        pylab.plot([i[2] for i in gsyn_for_neuron])
    pylab.show()

p.end()
开发者ID:SpikeFrame,项目名称:sPyNNaker,代码行数:30,代码来源:synfire_3_run_1_exit_extraction_if_curr_exp.py

示例4: list

        fast_injector.set("spike_times", [fast_spikes] + [[]] * 9)

    if last_spike_slow < total_run_time + time_to_run:
        slow_spikes = list(islice(slow_spike_iter, 10))
        last_spike_slow = slow_spikes[-1]
        slow_injector.set("spike_times", [slow_spikes] + [[]] * 9)

    sim.run(time_to_run)
    total_run_time += time_to_run

    plt.xlim(max(0, total_run_time - 5*time_to_run), total_run_time)
    if mode == "spikes":
        plt.ylim(-1, 101)
        all_spikes = populations[-1].getSpikes()
        print "Total spikes %d" % len(all_spikes)
        spikes = list(takewhile(lambda x: x[1] > total_run_time - time_to_run, all_spikes))
        plt.plot([i[1] for i in spikes], [i[0] for i in spikes], ".", markersize=2)
    else:
        plt.ylim(v_reset - 5, v_thresh + 5)
        voltages = list(ifilter(lambda x: x[0] == 1 and x[1] >= total_run_time - time_to_run,
            reversed(populations[0].get_v())))
        plt.plot([i[1] for i in voltages], [i[2] for i in voltages], "b-", markersize=1)

    plt.draw()
    plt.pause(0.001)

    if not plt.get_fignums():
        running = False

sim.end()
开发者ID:Scaatis,项目名称:SpiNNakerTests,代码行数:30,代码来源:dummy_net_multi_run.py

示例5: len

    n = n % len(seq)
    return seq[n:] + seq[:n]

# connect all populations, but don't close the chain
for pop_a, pop_b in zip(all_pops, shift(all_pops, 1)[:-1]):
    pynn.Projection(pop_a, pop_b, con_fixednumberpre, target='excitatory')

pynn.run(duration)

spikes = None

# Collect and record spikes
for pop in all_pops:
    new_spikes = pop.getSpikes(compatible_output=True)
    if new_spikes is not None:
        numpy.fliplr(new_spikes)
        new_spikes = new_spikes / [1, 1000.0]
        if spikes is None:
            spikes = new_spikes
        else:
            new_spikes = new_spikes + [len(spikes), 0]
            spikes = numpy.concatenate((spikes, new_spikes), axis=0)
if spikes is None:
    spikes = []

print "N spikes", len(spikes)

numpy.savetxt("spikes.dat", spikes)

pynn.end()
开发者ID:electronicvisions,项目名称:hbp_platform_demo,代码行数:30,代码来源:run.py

示例6: run_sim

    def run_sim(self):
        """
        Sets up and runs the simulation
        """
        num_neurons = 1471  # total neurons in network
        num_inputs = 14     # number of neurons considered inputs
        num_runs = 1        # number of times to loop the learning
        num_samples = 1     # number of samples to learn`
        sim_time = 1000.0    # time to run sim for`
        inhibitory_split = 0.2
        connection_probability_factor = 0.02
        plot_spikes = True
        save_figures = True
        show_figures = True
        sim_start_time = strftime("%Y-%m-%d_%H:%M")

        cell_params_lif = {'cm': 0.25, 'i_offset': 0.0, 'tau_m': 10.0, 'tau_refrac': 2.0, 'tau_syn_E': 3.0,
                           'tau_syn_I': 3.0, 'v_reset': -65.0, 'v_rest': -65.0, 'v_thresh': -50.0}

        # Create the 3d structure of the NeuCube based on the user's given structure file
        network_structure = NetworkStructure()
        network_structure.load_structure_file()
        network_structure.load_input_location_file()
        # Calculate the inter-neuron distance to be used in the small world connections
        network_structure.calculate_distances()
        # Generate two connection matrices for excitatory and inhibitory neurons based on your defined split
        network_structure.calculate_connection_matrix(inhibitory_split, connection_probability_factor)
        # Get these lists to be used when connecting the neurons later
        excitatory_connection_list = network_structure.get_excitatory_connection_list()
        inhibitory_connection_list = network_structure.get_inhibitory_connection_list()
        # Choose the correct neurons to connect them to, based on your a-priori knowledge of the data source -- eg, EEG
        # to 10-20 locations, fMRI to voxel locations, etc.
        input_neuron_indexes = network_structure.find_input_neurons()
        # Make the input connections based on this new list
        input_weight = 4.0
        input_connection_list = []
        for index, input_neuron_index in enumerate(input_neuron_indexes):
            input_connection_list.append((index, input_neuron_index, input_weight, 0))

        for run_number in xrange(num_runs):
            excitatory_weights = []
            inhibitory_weights = []
            for sample_number in xrange(num_samples):
                # At the moment with the limitations of the SpiNNaker hardware we have to reinstantiate EVERYTHING
                # each run. In future there will be some form of repetition added, where the structure stays in memory
                # on the SpiNNaker and only the input spikes need to be updated.

                data_prefix = sim_start_time + "_r" + str(run_number + 1) + "-s" + str(sample_number + 1)

                # Set up the hardware - min_delay should never be less than the timestep.
                # Timestep should = 1.0 (ms) for normal realtime applications
                p.setup(timestep=1.0, min_delay=1.0)
                p.set_number_of_neurons_per_core("IF_curr_exp", 100)

                # Create a population of neurons for the reservoir
                neurons = p.Population(num_neurons, p.IF_curr_exp, cell_params_lif, label="Reservoir")

                # Setup excitatory STDP
                timing_rule_ex = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)
                weight_rule_ex = p.AdditiveWeightDependence(w_min=0.1, w_max=1.0, A_plus=0.02, A_minus=0.02)
                stdp_model_ex  = p.STDPMechanism(timing_dependence=timing_rule_ex, weight_dependence=weight_rule_ex)
                # Setup inhibitory STDP
                timing_rule_inh = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)
                weight_rule_inh = p.AdditiveWeightDependence(w_min=0.0, w_max=0.6, A_plus=0.02, A_minus=0.02)
                stdp_model_inh  = p.STDPMechanism(timing_dependence=timing_rule_inh, weight_dependence=weight_rule_inh)

                # record the spikes from that population
                neurons.record('spikes')

                # Generate a population of SpikeSourceArrays containing the encoded input spike data
                # eg. spike_sources = p.Population(14, p.SpikeSourceArray, {'spike_times': [[]]})
                # for the moment I'm going to cheat and just use poisson trains as I don't have data with me
                spike_sources = p.Population(num_inputs, p.SpikeSourcePoisson, {'rate': rand.randint(20, 80)},
                                             label="Poisson_pop_E")

                # Connect the input spike sources with the "input" neurons
                connected_inputs = p.Projection(spike_sources, neurons, p.FromListConnector(input_connection_list))

                # If we have weights saved/recorded from a previous run of this network, load them into the structure
                # population.set(weights=weights_list) and population.setWeights(weight_list) are not supported in
                # SpiNNaker at the moment so we have to do this manually.
                if excitatory_weights and inhibitory_weights:
                    for index, ex_connection in enumerate(excitatory_connection_list):
                        ex_connection[2] = excitatory_weights[index]
                    for index, in_connection in enumerate(inhibitory_connection_list):
                        in_connection[2] = inhibitory_weights[index]

                # Setup the connectors
                excitatory_connector = p.FromListConnector(excitatory_connection_list)
                inhibitory_connector = p.FromListConnector(inhibitory_connection_list)

                # Connect the excitatory and inhibitory neuron populations
                connected_excitatory_neurons = p.Projection(neurons, neurons, excitatory_connector,
                                                            synapse_dynamics=p.SynapseDynamics(slow=stdp_model_ex),
                                                            target="excitatory")
                connected_inhibitory_neurons = p.Projection(neurons, neurons, inhibitory_connector,
                                                            synapse_dynamics=p.SynapseDynamics(slow=stdp_model_inh),
                                                            target="inhibitory")

                # Set up recording the spike trains of all the neurons
#.........这里部分代码省略.........
开发者ID:starlitnext,项目名称:NeuCubePyNN,代码行数:101,代码来源:NeuCubeReservoir.py


注:本文中的pyNN.spiNNaker.end函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。