本文整理汇总了Python中pulp.LpProblem.solve方法的典型用法代码示例。如果您正苦于以下问题:Python LpProblem.solve方法的具体用法?Python LpProblem.solve怎么用?Python LpProblem.solve使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pulp.LpProblem
的用法示例。
在下文中一共展示了LpProblem.solve方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pi_solve
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def pi_solve(pi, Q, s):
# The 'prob' variable will contain the problem data.
prob = LpProblem('FindPi', LpMinimize)
a0 = LpVariable('a0', 0.0) # the minimum is 0.0
a1 = LpVariable('a1', 0.0) # the minimum is 0.0
a2 = LpVariable('a2', 0.0) # the minimum is 0.0
a3 = LpVariable('a3', 0.0) # the minimum is 0.0
a4 = LpVariable('a4', 0.0) # the minimum is 0.0
v = LpVariable('v', 0.0)
# The objective function is added to 'prob' first
prob += v, "to minimize"
# constraints
prob += a0 * Q[s,0,0] + a1 * Q[s,1,0] + a2 * Q[s,2,0] + a3 * Q[s,3,0] + a4 * Q[s,4,0] <= v, 'constraint 1'
prob += a0 * Q[s,0,1] + a1 * Q[s,1,1] + a2 * Q[s,2,1] + a3 * Q[s,3,1] + a4 * Q[s,4,1] <= v, 'constraint 2'
prob += a0 * Q[s,0,2] + a1 * Q[s,1,2] + a2 * Q[s,2,2] + a3 * Q[s,3,2] + a4 * Q[s,4,2] <= v, 'constraint 3'
prob += a0 * Q[s,0,3] + a1 * Q[s,1,3] + a2 * Q[s,2,3] + a3 * Q[s,3,3] + a4 * Q[s,4,3] <= v, 'constraint 4'
prob += a0 * Q[s,0,4] + a1 * Q[s,1,4] + a2 * Q[s,2,4] + a3 * Q[s,3,4] + a4 * Q[s,4,4] <= v, 'constraint 5'
prob += 1.0*a0 + 1.0*a1 + 1.0*a2 + 1.0*a3 + 1.0*a4 == 1, 'constraint 6'
prob.solve()
pi_prime = [a.varValue for a in prob.variables()[:5]]
return np.array(pi_prime)
示例2: solve
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def solve(g):
el = g.get_edge_list()
nl = g.get_node_list()
p = LpProblem('min_cost', LpMinimize)
capacity = {}
cost = {}
demand = {}
x = {}
for e in el:
capacity[e] = g.get_edge_attr(e[0], e[1], 'capacity')
cost[e] = g.get_edge_attr(e[0], e[1], 'cost')
for i in nl:
demand[i] = g.get_node_attr(i, 'demand')
for e in el:
x[e] = LpVariable("x"+str(e), 0, capacity[e])
# add obj
objective = lpSum (cost[e]*x[e] for e in el)
p += objective
# add constraints
for i in nl:
out_neig = g.get_out_neighbors(i)
in_neig = g.get_in_neighbors(i)
p += lpSum(x[(i,j)] for j in out_neig) -\
lpSum(x[(j,i)] for j in in_neig)==demand[i]
p.solve()
return x, value(objective)
示例3: fuelSolution
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def fuelSolution(airports):
for i in range(len(airports)):
airports[i].previous = airports[i-1]
problem = LpProblem('Flight', LpMinimize)
problem+=sum(airport.fuelcost*airport.refuel for airport in airports), 'Cost'
for ap in airports:
problem+= ap.min_fuel + ap.refuel <= ap.startingFuel, 'Min Fuel %s' % ap.startingFuel
problem+= ap.startingFuel == ap.previous.startingFuel + ap.refuel - ap.distance*(1 + (ap.startingFuel + ap.previous.startingFuel - ap.refuel)/(2.*rate)), 'Takeoff Fuel Level %s' % ap.startingFuel
problem.solve()
return problem
示例4: find_optimal_strategy
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def find_optimal_strategy(states, controls, costs, kernels, solver=None):
"""
:param states: Number of system states (X)
:param controls: Number of system controls (U)
:param сosts: Cost matrix |X| x |U|
:param kernels: Transition kernels. Dimensionality |X| x |X| x |U|
"""
tolerance = 10e-15
X = range(states)
U = range(controls)
R = costs
Q = kernels
# Check costs
# Check num of rows
assert(len(R) == states)
for row in R:
# Check num of cols
assert(len(row) == controls)
# Check kernels
# Check num of rows
assert(len(Q) == states)
for row in Q:
# Check num of cols
assert(len(row) == states)
for items in row:
# Check num of items
assert(len(items) == controls)
# Check if distribution is normed
for dist in zip(*row):
assert(sum(dist)-1 < tolerance)
# LP object
optm = LpProblem("Optimal strategy", sense=LpMinimize)
# Variables (continuous in range [0, 1])
Z = [[LpVariable("z({},{})".format(x, u), 0, 1) \
for u in U] for x in X]
# Objective
optm.objective = sum(np.dot(Z[x], R[x]) for x in X)
# Constraints
for x in X:
cn = (sum(Z[x]) == sum(Q[y][x][u]*Z[y][u] for u in U for y in X))
optm.add(cn)
cn = sum(Z[x][u] for u in U for x in X) == 1
optm.add(cn)
optm.solve(solver)
return [(x, u) for u in U for x in X if value(Z[x][u]) != 0]
示例5: knapsack01
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def knapsack01(obj, weights, capacity):
""" 0/1 knapsack solver, maximizes profit. weights and capacity integer """
debug_subproblem = False
assert len(obj) == len(weights)
n = len(obj)
if n == 0:
return 0, []
if debug_subproblem:
relaxation = LpProblem('relaxation', LpMaximize)
relax_vars = [str(i) for i in range(n)]
var_dict = LpVariable.dicts("", relax_vars, 0, 1, LpBinary)
relaxation += (lpSum(var_dict[str(i)] * weights[i] for i in range(n))
<= capacity)
relaxation += lpSum(var_dict[str(i)] * obj[i] for i in range(n))
relaxation.solve()
relax_obj = value(relaxation.objective)
solution = [i for i in range(n) if var_dict[str(i)].varValue > tol ]
print relax_obj, solution
c = [[0]*(capacity+1) for i in range(n)]
added = [[False]*(capacity+1) for i in range(n)]
# c [items, remaining capacity]
# important: this code assumes strictly positive objective values
for i in range(n):
for j in range(capacity+1):
if (weights[i] > j):
c[i][j] = c[i-1][j]
else:
c_add = obj[i] + c[i-1][j-weights[i]]
if c_add > c[i-1][j]:
c[i][j] = c_add
added[i][j] = True
else:
c[i][j] = c[i-1][j]
# backtrack to find solution
i = n-1
j = capacity
solution = []
while i >= 0 and j >= 0:
if added[i][j]:
solution.append(i)
j -= weights[i]
i -= 1
return c[n-1][capacity], solution
示例6: pe185
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def pe185():
"""
Modelling as an integer programming problem.
Then using PuLP to solve it. It's really fast, just 0.24 seconds.
For details, see https://pythonhosted.org/PuLP/index.html
"""
from pulp import LpProblem, LpVariable, LpMinimize, LpInteger, lpSum, value
constraints = [
('2321386104303845', 0),
('3847439647293047', 1),
('3174248439465858', 1),
('8157356344118483', 1),
('6375711915077050', 1),
('6913859173121360', 1),
('4895722652190306', 1),
('5616185650518293', 2),
('4513559094146117', 2),
('2615250744386899', 2),
('6442889055042768', 2),
('2326509471271448', 2),
('5251583379644322', 2),
('2659862637316867', 2),
('5855462940810587', 3),
('9742855507068353', 3),
('4296849643607543', 3),
('7890971548908067', 3),
('8690095851526254', 3),
('1748270476758276', 3),
('3041631117224635', 3),
('1841236454324589', 3)
]
VALs = map(str, range(10))
LOCs = map(str, range(16))
choices = LpVariable.dicts("Choice", (LOCs, VALs), 0, 1, LpInteger)
prob = LpProblem("pe185", LpMinimize)
prob += 0, "Arbitrary Objective Function"
for s in LOCs:
prob += lpSum([choices[s][v] for v in VALs]) == 1, ""
for c, n in constraints:
prob += lpSum([choices[str(i)][v] for i,v in enumerate(c)]) == n, ""
prob.writeLP("pe185.lp")
prob.solve()
res = int(''.join(v for s in LOCs for v in VALs if value(choices[s][v])))
# answer: 4640261571849533
return res
示例7: get_best_assignments
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def get_best_assignments(self, row):
df = self.assignments[(self.assignments.FromIcao == row['FromIcao']) &
(self.assignments.ToIcao == row['ToIcao']) & (self.assignments.Amount <= row['Seats'])]
if not len(df):
return None
prob = LpProblem("Knapsack problem", LpMaximize)
w_list = df.Amount.tolist()
p_list = df.Pay.tolist()
x_list = [LpVariable('x{}'.format(i), 0, 1, 'Integer') for i in range(1, 1 + len(w_list))]
prob += sum([x * p for x, p in zip(x_list, p_list)]), 'obj'
prob += sum([x * w for x, w in zip(x_list, w_list)]) <= row['Seats'], 'c1'
prob.solve()
return df.iloc[[i for i in range(len(x_list)) if x_list[i].varValue]]
示例8: solve_under_coverage
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def solve_under_coverage(graph, min_coverage=80):
prob = LpProblem("granularity selection", LpMinimize)
codelet_vars = LpVariable.dicts("codelet",
graph,
lowBound=0,
upBound=1,
cat=LpInteger)
# Objective function: minimize the total replay cost of selected codelets
# Compute replay time
for n,d in graph.nodes(data=True):
d['_total_replay_cycles'] = 0
for inv in d['_invocations']:
d['_total_replay_cycles'] = d['_total_replay_cycles'] + float(inv["Invivo (cycles)"])
prob += lpSum([codelet_vars[n]*d['_total_replay_cycles'] for n,d in graph.nodes(data=True)])
# and with good coverage
prob += (lpSum([codelet_vars[n]*d['_coverage'] for n,d in graph.nodes(data=True)]) >= min_coverage)
# selected codelets should match
for n,d in graph.nodes(data=True):
if not d['_matching']:
prob += codelet_vars[n] == 0
# Finally we should never include both the children and the parents
for dad in graph.nodes():
for son in graph.nodes():
if not dad in nx.ancestors(graph, son):
continue
# We cannot select dad and son at the same time
prob += codelet_vars[dad] + codelet_vars[son] <= 1
#prob.solve(GLPK())
prob.solve()
if (LpStatus[prob.status] != 'Optimal'):
raise Unsolvable()
for v in prob.variables():
assert v.varValue == 1.0 or v.varValue == 0.0
if v.varValue == 1.0:
for n,d in graph.nodes(data=True):
if ("codelet_"+str(n)) == v.name:
d["_selected"] = True
yield n
示例9: K_dominance_check
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def K_dominance_check(self, _V_best_d, Q_d):
"""
:param _V_best_d: a list of d-dimension
:param Q_d: a list of d-dimension
:return: True if _V_best_d is prefered to Q_d regarding self.Lambda_inequalities and using Kdominance
other wise it returns False
"""
_d = len(_V_best_d)
prob = LpProblem("Ldominance", LpMinimize)
lambda_variables = LpVariable.dicts("l", range(_d), 0)
for inequ in self.Lambda_ineqalities:
prob += lpSum([inequ[j + 1] * lambda_variables[j] for j in range(0, _d)]) + inequ[0] >= 0
prob += lpSum([lambda_variables[i] * (_V_best_d[i]-Q_d[i]) for i in range(_d)])
#prob.writeLP("show-Ldominance.lp")
status = prob.solve()
LpStatus[status]
result = value(prob.objective)
if result < 0:
return False
return True
示例10: K_dominnace_check_2
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def K_dominnace_check_2(self, u_d, v_d, _inequalities):
"""
:param u_d: a d-dimensional vector(list) like [ 8.53149891 3.36436796]
:param v_d: tha same list like u_d
:param _inequalities: list of constraints on d-dimensional Lambda Polytope like
[[0, 1, 0], [1, -1, 0], [0, 0, 1], [1, 0, -1], [0.0, 1.4770889, -3.1250839]]
:return: True if u is Kdominance to v regarding given _inequalities otherwise False
"""
_d = len(u_d)
prob = LpProblem("Kdominance", LpMinimize)
lambda_variables = LpVariable.dicts("l", range(_d), 0)
for inequ in _inequalities:
prob += lpSum([inequ[j + 1] * lambda_variables[j] for j in range(0, _d)]) + inequ[0] >= 0
prob += lpSum([lambda_variables[i] * (u_d[i]-v_d[i]) for i in range(_d)])
#prob.writeLP("show-Ldominance.lp")
status = prob.solve()
LpStatus[status]
result = value(prob.objective)
if result < 0:
return False
return True
示例11: get_optimal_routes
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def get_optimal_routes(sources, destinations):
sources = collections.OrderedDict([(x['id'], x) for x in sources])
destinations = collections.OrderedDict([(x['id'], x) for x in destinations])
sources_points = [{'lat': x['lat'], 'lng': x['lng']} for x in sources.values()]
destinations_points = [{'lat': x['lat'], 'lng': x['lng']} for x in destinations.values()]
source_ids = [str(x['id']) for x in sources.values()]
dest_ids = [str(x['id']) for x in destinations.values()]
demand = {str(x['id']): convert_int(x['num_students']) for x in sources.values()}
supply = {str(x['id']): convert_int(x['num_students']) for x in destinations.values()}
log.info("Calling gmaps api...")
distances = gmaps.distance_matrix(origins=sources_points, destinations=destinations_points, mode='walking')
costs = {}
for i, origin in enumerate(distances['rows']):
origin_costs = {}
for j, entry in enumerate(origin['elements']):
origin_costs[dest_ids[j]] = entry['duration']['value']
costs[source_ids[i]] = origin_costs
prob = LpProblem("Evaucation Routing for Schools",LpMinimize)
routes = [(s,d) for s in source_ids for d in dest_ids]
route_lookup = {'Route_{}_{}'.format(x.replace(' ','_'),y.replace(' ','_')):(x,y) for (x,y) in routes}
route_vars = LpVariable.dicts("Route",(source_ids,dest_ids),0,None,LpInteger)
prob += lpSum([route_vars[w][b]*(costs[w][b]**2) for (w,b) in routes])
for dest in dest_ids:
prob += lpSum([route_vars[source][dest] for source in source_ids]) <= supply[dest], "Students going to {} is <= {}".format(dest, supply[dest])
for source in source_ids:
prob += lpSum([route_vars[source][dest] for dest in dest_ids]) == demand[source], "Students leaving {} is {}".format(source, demand[source])
log.info("Optimizing routes...")
prob.solve()
if prob.status != 1:
raise Exception("Algorithm could not converge to a solution")
result = []
for v in prob.variables():
src, dst = route_lookup[v.name]
value = v.value()
result.append({'src': sources[src], 'dst': destinations[dst], 'value': int(value)})
return result
示例12: _recurse
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def _recurse(work_pairs, mae, grace=None):
req = grace or 1.0
demands = {
'morning': mae[0],
'afternoon': mae[1],
'exam': mae[2],
}
total_avg = float(sum([demands[i] for i in SHIFTS])) / work_pairs
total_low, total_high = floor(total_avg), ceil(total_avg)
work_pair_count = work_pairs
avgs = [float(demands[i]) / work_pair_count for i in SHIFTS]
lows = [floor(a) for a in avgs]
highs = [ceil(a) for a in avgs]
target = req * total_avg * float(sum([COSTS[i] for i in SHIFTS])) / len(SHIFTS)
prob = LpProblem("Work Distribution", LpMinimize)
var_prefix = "shift"
shift_vars = LpVariable.dicts(var_prefix, SHIFTS, 0, cat=LpInteger)
prob += lpSum([COSTS[i] * shift_vars[i] for i in SHIFTS]), "cost of combination"
prob += lpSum([COSTS[i] * shift_vars[i] for i in SHIFTS]) >= target, "not too good"
prob += lpSum([shift_vars[i] for i in SHIFTS]) >= total_low, "low TOTAL"
prob += lpSum([shift_vars[i] for i in SHIFTS]) <= total_high, "high TOTAL"
for shift, low, high in zip(SHIFTS, lows, highs):
prob += lpSum([shift_vars[shift]]) >= low, "low %s" % shift
prob += lpSum([shift_vars[shift]]) <= high, "high %s" % shift
prob.solve(GLPK_CMD(msg=0))
if not LpStatus[prob.status] == 'Optimal':
next_grace = req - 0.1
assert 0.0 < next_grace
return _recurse(work_pairs, mae, next_grace)
new_mae = [0, 0, 0]
solution = [0, 0, 0]
for v in prob.variables():
for pos, name in enumerate(SHIFTS):
if v.name == "%s_%s" % (var_prefix, name):
solution[pos] = v.varValue
new_mae[pos] = mae[pos] - solution[pos]
return (PairAlloc(solution), work_pairs - 1) + tuple(new_mae)
示例13: get_linear_program_solution
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def get_linear_program_solution(self, c, b, A, x):
prob = LpProblem("myProblem", LpMinimize)
prob += lpSum([xp*cp for xp, cp in zip(x, c)]), "Total Cost of Ingredients per can"
for row, cell in zip(A, b):
prob += lpSum(ap*xp for ap, xp in zip(row, x)) <= cell
solved = prob.solve()
return prob
示例14: runLPP
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def runLPP(lines):
# reads the data from the CSV file into the LPP
variables, ingredients, servingsPerBlock, costsPerServing = [], [], [], []
for row in lines: # read in the variables from the lines
variables.append(LpVariable("x_" + row[1], 0, None, LpInteger))
ingredients.append(row[0])
servingsPerBlock.append(float(row[2]))
costsPerServing.append(float(row[3]))
variables.append(LpVariable("s", 0))
# read in the upper and lower bounds for aLCM
minServe = lines[0][4]
maxServe = lines[0][5]
# makes the new LP Problem
problem = LpProblem("Approximate LCM", LpMinimize)
# serving constraints: specifies the interval in which the approximate
# LCM may lie
min_constraint = variables[-1] >= float(minServe)
max_constraint = variables[-1] <= float(maxServe)
problem += min_constraint
problem += max_constraint
# block constraints: there must be enough of each ingredient for the
# ultimate optimal number
for v in range(len(variables) - 1):
min_constraint = variables[v] * servingsPerBlock[v] >= variables[-1]
problem += min_constraint
pps = 0.0 # price per serving
for i in range(len(variables) - 1):
pps += costsPerServing[i]
# add objective function to be minimized (waste)
obj_fn = 0 * variables[0]
for i in range(len(variables) - 1):
obj_fn += variables[i] * costsPerServing[i] * servingsPerBlock[i]
obj_fn -= variables[-1] * pps
problem += obj_fn # add the objective funciton to the problem
problem.solve() # runs the linear programming problem
return [variables, costsPerServing, obj_fn]
示例15: main
# 需要导入模块: from pulp import LpProblem [as 别名]
# 或者: from pulp.LpProblem import solve [as 别名]
def main():
x = LpVariable("x", 0, 3)
y = LpVariable("y", 0, 1)
prob = LpProblem("myProblem", LpMinimize)
prob += x + y <= 2
prob += -4*x + y
status = prob.solve(COIN(msg = 0))
print LpStatus[status]
print value(x)
print value(y)