当前位置: 首页>>代码示例>>Python>>正文


Python GTModality.read_data_from_path方法代码示例

本文整理汇总了Python中protoclass.data_management.GTModality.read_data_from_path方法的典型用法代码示例。如果您正苦于以下问题:Python GTModality.read_data_from_path方法的具体用法?Python GTModality.read_data_from_path怎么用?Python GTModality.read_data_from_path使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在protoclass.data_management.GTModality的用法示例。


在下文中一共展示了GTModality.read_data_from_path方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_partial_fit_model_dict_wrong_type

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_partial_fit_model_dict_wrong_type():
    """Test either if an error is raised when a parameters is a wrong
     type in the dictionary."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)
    params = {'std': 50., 'exp': 25., 'alpha': .9, 'max_iter': 5.}
    assert_raises(ValueError, stn.partial_fit_model, dce_mod,
                  ground_truth=gt_mod, cat=label_gt[0], params=params)

    params = {'std': 50., 'exp': 25, 'alpha': .9, 'max_iter': 5}
    assert_raises(ValueError, stn.partial_fit_model, dce_mod,
                  ground_truth=gt_mod, cat=label_gt[0], params=params)
开发者ID:glemaitre,项目名称:protoclass,代码行数:30,代码来源:test_standard_time_normalization.py

示例2: test_qte_transform_regular

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_qte_transform_regular():
    """Test the transform function for regular model."""

    # Try to fit an object with another modality
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir,
                             '../../preprocessing/tests/data/full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()
    dce_mod.read_data_from_path(path_data)
    # Create the gt data
    gt_mod = GTModality()
    gt_cat = ['cap']
    path_data = [os.path.join(
        currdir,
        '../../preprocessing/tests/data/full_gt/cap')]
    gt_mod.read_data_from_path(gt_cat, path_data)

    # Create the object for the Tofts extraction
    tqe = ToftsQuantificationExtraction(DCEModality(), 1.6, 3.5,
                                        random_state=RND_SEED)
    tqe.fit(dce_mod)
    data = tqe.transform(dce_mod, gt_mod, gt_cat[0], kind='regular')

    data_gt = np.load(os.path.join(currdir, 'data/tofts_reg_data.npy'))
    assert_array_almost_equal(data, data_gt, decimal=DECIMAL_PRECISION)
开发者ID:glemaitre,项目名称:protoclass,代码行数:28,代码来源:test_tofts_quantification_extraction.py

示例3: test_extract_index

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_extract_index():
    """ Test if the indexes of a GT will be well extracted. """

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'gt_folders')
    path_data_list = [os.path.join(path_data, 'prostate'),
                      os.path.join(path_data, 'cg'),
                      os.path.join(path_data, 'pz'),
                      os.path.join(path_data, 'cap')]
    # Give the list for the ground_truth
    label = ['prostate', 'cg', 'pz', 'cap']
    # Create an object to handle the data
    gt_mod = GTModality()

    # Read the data
    gt_mod.read_data_from_path(label, path_data=path_data_list)

    # Extract the prostate indexes
    label_extr = 'prostate'
    idx_prostate = gt_mod.extract_gt_data(label_extr, 'index')
    data = np.load(os.path.join(currdir, 'data', 'extract_gt_index.npy'))
    # Check each table
    for idx_arr, test_arr in zip(idx_prostate, data):
        assert_array_equal(idx_arr, test_arr)
开发者ID:glemaitre,项目名称:protoclass,代码行数:27,代码来源:test_gt_modality.py

示例4: test_partial_fit_model_2

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_partial_fit_model_2():
    """Test the routine to fit two models."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)
    stn.partial_fit_model(dce_mod, gt_mod, label_gt[0])
    stn.partial_fit_model(dce_mod, gt_mod, label_gt[0])

    # Check the model computed
    model_gt = np.array([22.26479174, 22.51070962, 24.66027277, 23.43488237,
                         23.75601817, 22.56173871, 26.86244505, 45.06227804,
                         62.34273874, 71.35327656])
    assert_array_almost_equal(stn.model_, model_gt, decimal=PRECISION_DECIMAL)
    assert_true(stn.is_model_fitted_)
开发者ID:glemaitre,项目名称:protoclass,代码行数:31,代码来源:test_standard_time_normalization.py

示例5: test_read_gt_data_path_list_constructor

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_read_gt_data_path_list_constructor():
    """ Test if we can read gt series. """

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'gt_folders')
    path_data_list = [os.path.join(path_data, 'prostate'),
                      os.path.join(path_data, 'cg'),
                      os.path.join(path_data, 'pz'),
                      os.path.join(path_data, 'cap')]
    # Give the list for the ground_truth
    label = ['prostate', 'cg', 'pz', 'cap']
    # Create an object to handle the data
    gt_mod = GTModality(path_data_list)

    # Check that the data have been read
    assert_true(not gt_mod.is_read())

    gt_mod.read_data_from_path(label)

    # Check that the data have been read
    assert_true(gt_mod.is_read())

    # Check the data here
    data = np.load(os.path.join(currdir, 'data', 'gt_path_list.npy'))
    assert_array_equal(gt_mod.data_, data)
    assert_equal(gt_mod.n_serie_, 4)
开发者ID:glemaitre,项目名称:protoclass,代码行数:29,代码来源:test_gt_modality.py

示例6: test_fit

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_fit():
    """Test the routine to fit the parameters of the dce normalization."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)

    # Create a synthetic model to fit on
    stn.model_ = np.array([30., 30., 32., 31., 31., 30., 35., 55., 70., 80.])
    stn.is_model_fitted_ = True

    # Fit the parameters on the model
    stn.fit(dce_mod, gt_mod, label_gt[0])

    assert_almost_equal(stn.fit_params_['scale-int'], 1.2296657327848537,
                        decimal=PRECISION_DECIMAL)
    assert_equal(stn.fit_params_['shift-time'], 0.0)
    data = np.array([191.29, 193.28, 195.28, 195.28, 195.28, 197.28, 213.25,
                     249.18, 283.12, 298.10])
    assert_array_almost_equal(stn.fit_params_['shift-int'], data,
                              decimal=PRECISION_DECIMAL)
开发者ID:glemaitre,项目名称:protoclass,代码行数:37,代码来源:test_standard_time_normalization.py

示例7: test_shift_heatmap_wrong_shift

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_shift_heatmap_wrong_shift():
    """Test if an error is raised when the shidt provided is not consistent."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Build a heatmap from the dce data
    # Reduce the number of bins to enforce low memory consumption
    nb_bins = [100] * dce_mod.n_serie_
    heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
        label_gt[0]), nb_bins=nb_bins)

    # Create a list of shift which do not have the same number of entries
    # than the heatmap - There is 4 series, let's create only 2
    shift_arr = np.array([10] * 2)

    assert_raises(ValueError, StandardTimeNormalization._shift_heatmap,
                  heatmap, shift_arr)
开发者ID:glemaitre,项目名称:protoclass,代码行数:32,代码来源:test_standard_time_normalization.py

示例8: test_shift_heatmap

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_shift_heatmap():
    """Test the routine which shift the heatmap."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Build a heatmap from the dce data
    # Reduce the number of bins to enforce low memory consumption
    nb_bins = [100] * dce_mod.n_serie_
    heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
        label_gt[0]), nb_bins=nb_bins)

    # Create a list of shift which do not have the same number of entries
    # than the heatmap - There is 4 series, let's create only 2
    shift_arr = np.array([10] * 4)

    heatmap_shifted = StandardTimeNormalization._shift_heatmap(heatmap,
                                                               shift_arr)

    data = np.load(os.path.join(currdir, 'data', 'heatmap_shifted.npy'))
    assert_array_equal(heatmap_shifted, data)
开发者ID:glemaitre,项目名称:protoclass,代码行数:35,代码来源:test_standard_time_normalization.py

示例9: test_gn_wrong_size_gt

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_gn_wrong_size_gt():
    """ Test either if an error is raised when the size of the ground-truth
    is different from the size of the base modality. """

    # Create a T2WModality object
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data_t2w = os.path.join(currdir, 'data', 't2w')
    t2w_mod = T2WModality(path_data_t2w)
    t2w_mod.read_data_from_path()

    # Create the GTModality object
    path_data_gt = os.path.join(currdir, 'data', 'gt_folders')
    path_data_gt_list = [os.path.join(path_data_gt, 'prostate'),
                         os.path.join(path_data_gt, 'pz'),
                         os.path.join(path_data_gt, 'cg'),
                         os.path.join(path_data_gt, 'cap')]
    label_gt = ['prostate', 'pz', 'cg', 'cap']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(cat_gt=label_gt, path_data=path_data_gt_list)

    # Change the size of the data of the modality
    t2w_mod.data_ = t2w_mod.data_[:-1, :, :]

    gaussian_norm = GaussianNormalization(T2WModality())
    assert_raises(ValueError, gaussian_norm.fit, t2w_mod, gt_mod, label_gt[0])
开发者ID:glemaitre,项目名称:protoclass,代码行数:27,代码来源:test_gaussian_normalization.py

示例10: test_ese_transform_gt_cat

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_ese_transform_gt_cat():
    """Test the transform routine with a given ground-truth."""

    # Create the normalization object with the right modality
    dce_ese = EnhancementSignalExtraction(DCEModality())

    # Try to fit an object with another modality
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'dce')
    # Create an object to handle the data
    dce_mod = DCEModality()
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Fit and raise the error
    data = dce_ese.transform(dce_mod, gt_mod, label_gt[0])

    # Check the size of the data
    assert_equal(data.shape, (12899, 4))
    # Check the hash of the data
    data.flags.writeable = False
    assert_equal(hash(data.data), -3808597525488161265)
开发者ID:glemaitre,项目名称:protoclass,代码行数:29,代码来源:test_enhancement_signal_extraction.py

示例11: test_gn_fit_fix_mu_sigma

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_gn_fit_fix_mu_sigma():
    """ Test the fitting routine with fixed mean and std. """

    # Create a T2WModality object
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data_t2w = os.path.join(currdir, 'data', 't2w')
    t2w_mod = T2WModality(path_data_t2w)
    t2w_mod.read_data_from_path()

    # Create the GTModality object
    path_data_gt = os.path.join(currdir, 'data', 'gt_folders')
    path_data_gt_list = [os.path.join(path_data_gt, 'prostate'),
                         os.path.join(path_data_gt, 'pz'),
                         os.path.join(path_data_gt, 'cg'),
                         os.path.join(path_data_gt, 'cap')]
    label_gt = ['prostate', 'pz', 'cg', 'cap']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(cat_gt=label_gt, path_data=path_data_gt_list)

    params = {'mu': 200., 'sigma': 70.}
    gaussian_norm = GaussianNormalization(T2WModality(), params=params)
    gaussian_norm.fit(t2w_mod, gt_mod, label_gt[0])
    assert_almost_equal(gaussian_norm.fit_params_['mu'], 245.90,
                        decimal=DECIMAL_PRECISON)
    assert_almost_equal(gaussian_norm.fit_params_['sigma'], 74.31,
                        decimal=DECIMAL_PRECISON)
开发者ID:glemaitre,项目名称:protoclass,代码行数:28,代码来源:test_gaussian_normalization.py

示例12: test_denormalize_wt_fitting

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_denormalize_wt_fitting():
    """Test either an error is raised if the data are not fitted first."""
    # Create a T2WModality object
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data_t2w = os.path.join(currdir, 'data', 't2w')
    t2w_mod = T2WModality(path_data_t2w)
    t2w_mod.read_data_from_path()

    # Create the GTModality object
    path_data_gt = os.path.join(currdir, 'data', 'gt_folders')
    path_data_gt_list = [os.path.join(path_data_gt, 'prostate'),
                         os.path.join(path_data_gt, 'pz'),
                         os.path.join(path_data_gt, 'cg'),
                         os.path.join(path_data_gt, 'cap')]
    label_gt = ['prostate', 'pz', 'cg', 'cap']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(cat_gt=label_gt, path_data=path_data_gt_list)

    # Store the data before the normalization
    pdf_copy = t2w_mod.pdf_.copy()
    data_copy = t2w_mod.data_.copy()

    # Normalize the data
    gaussian_norm = GaussianNormalization(T2WModality())
    assert_raises(ValueError, gaussian_norm.denormalize, t2w_mod)
开发者ID:glemaitre,项目名称:protoclass,代码行数:27,代码来源:test_gaussian_normalization.py

示例13: test_rn_fit_fix_params

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_rn_fit_fix_params():
    """ Test the fitting routine with fixed parameters. """

    # Create a T2WModality object
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data_t2w = os.path.join(currdir, 'data', 't2w')
    t2w_mod = T2WModality(path_data_t2w)
    t2w_mod.read_data_from_path()

    # Create the GTModality object
    path_data_gt = os.path.join(currdir, 'data', 'gt_folders')
    path_data_gt_list = [os.path.join(path_data_gt, 'prostate'),
                         os.path.join(path_data_gt, 'pz'),
                         os.path.join(path_data_gt, 'cg'),
                         os.path.join(path_data_gt, 'cap')]
    label_gt = ['prostate', 'pz', 'cg', 'cap']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(cat_gt=label_gt, path_data=path_data_gt_list)

    params = {'b': 200., 'off': 7., 'sigma': 80.}
    rician_norm = RicianNormalization(T2WModality(), params=params)
    rician_norm.fit(t2w_mod, gt_mod, label_gt[0])
    assert_almost_equal(rician_norm.fit_params_['b'], 1.4463929678319398,
                        decimal=DECIMAL_PRECISON)
    assert_almost_equal(rician_norm.fit_params_['off'], 0.12668917318976813,
                        decimal=DECIMAL_PRECISON)
    assert_almost_equal(rician_norm.fit_params_['sigma'], 0.10331905081688209,
                        decimal=DECIMAL_PRECISON)
开发者ID:glemaitre,项目名称:protoclass,代码行数:30,代码来源:test_rician_normalization.py

示例14: test_build_graph

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_build_graph():
    """Test the method to build a graph from the heatmap."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Build a heatmap from the dce data
    # Reduce the number of bins to enforce low memory consumption
    nb_bins = [100] * dce_mod.n_serie_
    heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
        label_gt[0]), nb_bins=nb_bins)

    # Build the graph by taking the inverse exponential of the heatmap
    graph = StandardTimeNormalization._build_graph(heatmap, .5)
    graph_dense = graph.toarray()

    data = np.load(os.path.join(currdir, 'data', 'graph.npy'))
    assert_array_equal(graph_dense, data)
开发者ID:glemaitre,项目名称:protoclass,代码行数:32,代码来源:test_standard_time_normalization.py

示例15: test_save_model_wrong_ext

# 需要导入模块: from protoclass.data_management import GTModality [as 别名]
# 或者: from protoclass.data_management.GTModality import read_data_from_path [as 别名]
def test_save_model_wrong_ext():
    """Test either if an error is raised if the filename as a wrong
    extension while storing the model."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)
    stn.partial_fit_model(dce_mod, gt_mod, label_gt[0])

    # Try to store the file not with an npy file
    assert_raises(ValueError, stn.save_model, os.path.join(currdir, 'data',
                                                           'model.rnd'))
开发者ID:glemaitre,项目名称:protoclass,代码行数:28,代码来源:test_standard_time_normalization.py


注:本文中的protoclass.data_management.GTModality.read_data_from_path方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。