本文整理汇总了Python中protoclass.data_management.DCEModality.build_heatmap方法的典型用法代码示例。如果您正苦于以下问题:Python DCEModality.build_heatmap方法的具体用法?Python DCEModality.build_heatmap怎么用?Python DCEModality.build_heatmap使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类protoclass.data_management.DCEModality
的用法示例。
在下文中一共展示了DCEModality.build_heatmap方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_build_graph
# 需要导入模块: from protoclass.data_management import DCEModality [as 别名]
# 或者: from protoclass.data_management.DCEModality import build_heatmap [as 别名]
def test_build_graph():
"""Test the method to build a graph from the heatmap."""
# Load the data with only a single serie
currdir = os.path.dirname(os.path.abspath(__file__))
path_data = os.path.join(currdir, 'data', 'dce')
# Create an object to handle the data
dce_mod = DCEModality()
# Read the data
dce_mod.read_data_from_path(path_data)
# Load the GT data
path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
label_gt = ['prostate']
gt_mod = GTModality()
gt_mod.read_data_from_path(label_gt, path_gt)
# Build a heatmap from the dce data
# Reduce the number of bins to enforce low memory consumption
nb_bins = [100] * dce_mod.n_serie_
heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
label_gt[0]), nb_bins=nb_bins)
# Build the graph by taking the inverse exponential of the heatmap
graph = StandardTimeNormalization._build_graph(heatmap, .5)
graph_dense = graph.toarray()
data = np.load(os.path.join(currdir, 'data', 'graph.npy'))
assert_array_equal(graph_dense, data)
示例2: test_shift_heatmap
# 需要导入模块: from protoclass.data_management import DCEModality [as 别名]
# 或者: from protoclass.data_management.DCEModality import build_heatmap [as 别名]
def test_shift_heatmap():
"""Test the routine which shift the heatmap."""
# Load the data with only a single serie
currdir = os.path.dirname(os.path.abspath(__file__))
path_data = os.path.join(currdir, 'data', 'dce')
# Create an object to handle the data
dce_mod = DCEModality()
# Read the data
dce_mod.read_data_from_path(path_data)
# Load the GT data
path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
label_gt = ['prostate']
gt_mod = GTModality()
gt_mod.read_data_from_path(label_gt, path_gt)
# Build a heatmap from the dce data
# Reduce the number of bins to enforce low memory consumption
nb_bins = [100] * dce_mod.n_serie_
heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
label_gt[0]), nb_bins=nb_bins)
# Create a list of shift which do not have the same number of entries
# than the heatmap - There is 4 series, let's create only 2
shift_arr = np.array([10] * 4)
heatmap_shifted = StandardTimeNormalization._shift_heatmap(heatmap,
shift_arr)
data = np.load(os.path.join(currdir, 'data', 'heatmap_shifted.npy'))
assert_array_equal(heatmap_shifted, data)
示例3: test_shift_heatmap_wrong_shift
# 需要导入模块: from protoclass.data_management import DCEModality [as 别名]
# 或者: from protoclass.data_management.DCEModality import build_heatmap [as 别名]
def test_shift_heatmap_wrong_shift():
"""Test if an error is raised when the shidt provided is not consistent."""
# Load the data with only a single serie
currdir = os.path.dirname(os.path.abspath(__file__))
path_data = os.path.join(currdir, 'data', 'dce')
# Create an object to handle the data
dce_mod = DCEModality()
# Read the data
dce_mod.read_data_from_path(path_data)
# Load the GT data
path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
label_gt = ['prostate']
gt_mod = GTModality()
gt_mod.read_data_from_path(label_gt, path_gt)
# Build a heatmap from the dce data
# Reduce the number of bins to enforce low memory consumption
nb_bins = [100] * dce_mod.n_serie_
heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
label_gt[0]), nb_bins=nb_bins)
# Create a list of shift which do not have the same number of entries
# than the heatmap - There is 4 series, let's create only 2
shift_arr = np.array([10] * 2)
assert_raises(ValueError, StandardTimeNormalization._shift_heatmap,
heatmap, shift_arr)
示例4: test_build_heatmap_roi
# 需要导入模块: from protoclass.data_management import DCEModality [as 别名]
# 或者: from protoclass.data_management.DCEModality import build_heatmap [as 别名]
def test_build_heatmap_roi():
""" Test if the heatmap is built properly when providing a ROI. """
# Load the data with only a single serie
currdir = os.path.dirname(os.path.abspath(__file__))
path_data = os.path.join(currdir, 'data', 'dce')
# Create an object to handle the data
dce_mod = DCEModality()
# Read the data
dce_mod.read_data_from_path(path_data)
dce_mod.data_ /= 2.
dce_mod.update_histogram()
# Create some ground-truth
pos = np.ones((368, 448), dtype=bool)
neg = np.zeros((368, 448), dtype=bool)
gt_index = np.rollaxis(np.array([neg, pos, pos, pos, neg]), 0, 3)
# Build the heatmap
heatmap, bins_heatmap = dce_mod.build_heatmap(roi_data=(gt_index))
# Check that heatmap is what we expect
data = np.load(os.path.join(currdir, 'data', 'heatmap_roi_mod.npy'))
assert_array_equal(heatmap, data)
data = np.load(os.path.join(currdir, 'data', 'bins_heatmap_roi_mod.npy'))
assert_array_equal(bins_heatmap, data)
示例5: test_build_heatmap_none_bins
# 需要导入模块: from protoclass.data_management import DCEModality [as 别名]
# 或者: from protoclass.data_management.DCEModality import build_heatmap [as 别名]
def test_build_heatmap_none_bins():
""" Test if the heatmap is built properly with None value for bins."""
# Load the data with only a single serie
currdir = os.path.dirname(os.path.abspath(__file__))
path_data = os.path.join(currdir, 'data', 'dce')
# Create an object to handle the data
dce_mod = DCEModality()
# Read the data
dce_mod.read_data_from_path(path_data)
# Build the heatmap
heatmap, bins_heatmap = dce_mod.build_heatmap(nb_bins=None)
# Check that heatmap is what we expect
data = np.load(os.path.join(currdir, 'data', 'heatmap.npy'))
assert_array_equal(heatmap, data)
data = np.load(os.path.join(currdir, 'data', 'bins_heatmap.npy'))
assert_array_equal(bins_heatmap, data)
示例6: test_walk_through_graph_shortest_path
# 需要导入模块: from protoclass.data_management import DCEModality [as 别名]
# 或者: from protoclass.data_management.DCEModality import build_heatmap [as 别名]
def test_walk_through_graph_shortest_path():
"""Test the routine to go through the graph using shortest path."""
# Load the data with only a single serie
currdir = os.path.dirname(os.path.abspath(__file__))
path_data = os.path.join(currdir, 'data', 'dce')
# Create an object to handle the data
dce_mod = DCEModality()
# Read the data
dce_mod.read_data_from_path(path_data)
# Load the GT data
path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
label_gt = ['prostate']
gt_mod = GTModality()
gt_mod.read_data_from_path(label_gt, path_gt)
# Build a heatmap from the dce data
# Reduce the number of bins to enforce low memory consumption
nb_bins = [10] * dce_mod.n_serie_
heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
label_gt[0]), nb_bins=nb_bins)
# Build the graph by taking the inverse exponential of the heatmap
heatmap_inv_exp = np.exp(img_as_float(1. - (heatmap / np.max(heatmap))))
graph = StandardTimeNormalization._build_graph(heatmap_inv_exp, .99)
start_end_tuple = ((0, 6), (3, 6))
# Call the algorithm to walk through the graph
path = StandardTimeNormalization._walk_through_graph(graph,
heatmap_inv_exp,
start_end_tuple,
'shortest-path')
gt_path = np.array([[0, 6], [1, 6], [2, 6], [3, 6]])
assert_array_equal(path, gt_path)
示例7: DCEModality
# 需要导入模块: from protoclass.data_management import DCEModality [as 别名]
# 或者: from protoclass.data_management.DCEModality import build_heatmap [as 别名]
path_dce = '/data/prostate/experiments/Patient 387/DCE'
# Define the list of path for the GT
path_gt = ['/data/prostate/experiments/Patient 387/GT_inv/prostate']
# Define the associated list of label for the GT
label_gt = ['prostate']
# Read the DCE
dce_mod = DCEModality()
dce_mod.read_data_from_path(path_dce)
# Read the GT
gt_mod = GTModality()
gt_mod.read_data_from_path(label_gt, path_gt)
# Fit the data to get the normalization parameters
dce_norm.fit(dce_mod, ground_truth=gt_mod,
cat='prostate')
dce_mod_norm = dce_norm.normalize(dce_mod)
# Plot the figure
plt.figure()
heatmap, bins_heatmap = dce_mod.build_heatmap(np.nonzero(gt_mod.data_[0, :, :, :]))
sns.heatmap(heatmap, cmap='jet')
# plt.plot(dce_norm.shift_idx_, np.arange(0, dce_mod.n_serie_)[::-1] + .5 ,'ro')
# plt.plot(dce_norm.shift_idx_ + dce_norm.rmse,
# np.arange(0, dce_mod.n_serie_)[::-1] + .5 ,'go')
# plt.plot(dce_norm.shift_idx_ - dce_norm.rmse,
# np.arange(0, dce_mod.n_serie_)[::-1] + .5 ,'go')
plt.savefig('heatmap.png')