本文整理汇总了Python中pln.chainers.Chainer.add_rule方法的典型用法代码示例。如果您正苦于以下问题:Python Chainer.add_rule方法的具体用法?Python Chainer.add_rule怎么用?Python Chainer.add_rule使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pln.chainers.Chainer
的用法示例。
在下文中一共展示了Chainer.add_rule方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: InferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class InferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
print "Initializing InferenceAgent."
def create_chainer(self, atomspace, stimulate_atoms=True):
self.chainer = Chainer(atomspace,
agent=self,
stimulateAtoms=stimulate_atoms,
allow_output_with_variables=False,
preferAttentionalFocus=True,
delete_temporary_variables=True)
# ModusPonens:
# Implication smokes(x) cancer(X)
# smokes(Anna)
# |= cancer(Anna)
self.chainer.add_rule(
ModusPonensRule(self.chainer, types.ImplicationLink))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
print "PLN Chainer created."
return
print "PLN continuing."
target = atomspace[scheme_eval_h(atomspace, "query")]
if not check_result(atomspace):
result = self.chainer.forward_step()
self.chainer._give_stimulus(target, TARGET_STIMULUS)
return result
示例2: InferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class InferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace,
stimulateAtoms=False,
allow_output_with_variables=True)
# EvaluationToMember, MemberToInheritance
self.chainer.add_rule(
EvaluationToMemberRule(self.chainer, 0, 1))
self.chainer.add_rule(MemberToEvaluationRule(self.chainer))
self.chainer.add_rule(MemberToInheritanceRule(self.chainer))
self.chainer.add_rule(InheritanceToMemberRule(self.chainer))
# For predicates with 2 arguments,
# with the 0th argument made into a variable
self.chainer.add_rule(
EvaluationToMemberRule(self.chainer, 0, 2))
# ModusPonens:
# Implication smokes(x) cancer(X)
# smokes(Anna)
# |= cancer(Anna)
self.chainer.add_rule(
ModusPonensRule(self.chainer, types.ImplicationLink))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
return
result = self.chainer.forward_step()
return result
示例3: InferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class InferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace, stimulateAtoms=False)
# Note:
# The API for adding Rules and Links to a PLN Chainer is
# hard to use. It could be redesigned so that you would
# just pass a list of rule types and link types when you
# instantiate the Chainer, without having to be aware of
# the different sets of rules that require different
# argument sets.
for rule in RULES_CHAINER_LINKTYPE:
for link_type in LINK_TYPES:
print rule, link_type
self.chainer.add_rule(rule(self.chainer, link_type))
for rule in RULES_CHAINER:
self.chainer.add_rule(rule(self.chainer))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
return
result = self.chainer.forward_step()
if __VERBOSE__:
print result
return result
示例4: DeductionAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class DeductionAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace, stimulateAtoms=False)
link_types = [types.InheritanceLink]
for link_type in link_types:
self.chainer.add_rule(DeductionRule(self.chainer, link_type))
def run(self, atomspace):
# Run is invoked on every cogserver cognitive cycle
# If it is the first time it has been invoked, then the chainer
# needs to be created
if self.chainer is None:
self.create_chainer(atomspace)
return
result = self.chainer.forward_step()
if __VERBOSE__:
print result
return result
def get_trails(self):
return self.chainer.trails
def get_history(self):
return self.chainer.history.get_history()
示例5: EvaluationToMemberAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class EvaluationToMemberAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace,
stimulateAtoms=False,
allow_output_with_variables=True,
delete_temporary_variables=True)
self.chainer.add_rule(
GeneralEvaluationToMemberRule(self.chainer, 0, 2))
self.chainer.add_rule(MemberToInheritanceRule(self.chainer))
self.chainer.add_rule(
DeductionRule(self.chainer, types.InheritanceLink))
self.chainer.add_rule(
InheritanceToMemberRule(self.chainer))
self.chainer.add_rule(
MemberToEvaluationRule(self.chainer))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
return
result = self.chainer.forward_step()
return result
示例6: DeceptionAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class DeceptionAgent(MindAgent):
def __init__(self):
self.chainer = None
print "Initialized DeceptionAgent."
def create_chainer(self, atomspace, stimulate_atoms=False):
self.chainer = Chainer(atomspace,
agent=self,
stimulateAtoms=stimulate_atoms,
allow_output_with_variables=False,
delete_temporary_variables=True)
self.chainer.add_rule(
ModusPonensRule(self.chainer, types.ImplicationLink))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
return
result = self.chainer.forward_step()
# if __VERBOSE__:
# print result
return result
def get_trails(self):
return self.chainer.trails
def get_history(self):
return self.chainer.history.get_history()
示例7: InferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class InferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace, stimulate_atoms=True):
self.chainer = Chainer(atomspace,
agent=self,
stimulateAtoms=stimulate_atoms,
allow_output_with_variables=False,
preferAttentionalFocus=True,
delete_temporary_variables=True)
# ModusPonens:
# Implication smokes(x) cancer(X)
# smokes(Anna)
# |= cancer(Anna)
self.chainer.add_rule(
ModusPonensRule(self.chainer, types.ImplicationLink))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
return
if not check_result(atomspace):
result = self.chainer.forward_step()
return result
示例8: InferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class InferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
self.query = None
print "Initializing InferenceAgent."
def create_chainer(self, atomspace, stimulate_atoms=True):
"""
Creates the chainer for the "smokes" example. Optionally, you can
define the target query before calling this method, by defining a
Scheme expression named "query". For example, you can issue the
Scheme expression "(define query hasCancer)" in reference to the
predicate defined in smokes.scm before loading this agent. Once
defined, the target query will receive stimulus at every time step.
Stimulus requires the agent to be running in a CogServer.
For a complete example that incorporates this behavior, see
example.py here:
https://github.com/opencog/external-tools/tree/master/attention
"""
self.chainer = Chainer(atomspace,
agent=self,
stimulateAtoms=stimulate_atoms,
allow_output_with_variables=False,
preferAttentionalFocus=True,
delete_temporary_variables=True)
# ModusPonens:
# Implication smokes(x) cancer(X)
# smokes(Anna)
# |= cancer(Anna)
self.chainer.add_rule(
ModusPonensRule(self.chainer, types.ImplicationLink))
# stimulateAtoms is only enabled when the agent is ran inside the
# CogServer, since the functionality requires a CogServer and
# attention allocation
if self.chainer._stimulateAtoms:
self.query = scheme_eval_h(atomspace, "query")
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
print "PLN Chainer created."
return
print "PLN continuing."
if not check_result(atomspace):
result = self.chainer.forward_step()
if self.query is not None:
self.chainer._give_stimulus(atomspace[self.query],
TARGET_STIMULUS)
return result
示例9: BackwardInferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class BackwardInferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace, stimulateAtoms = False, agent = self)
deduction_link_types = [types.InheritanceLink]
# types.SubsetLink, types.IntensionalInheritanceLink]
for link_type in deduction_link_types:
self.chainer.add_rule(rules.InversionRule(self.chainer, link_type))
self.chainer.add_rule(rules.DeductionRule(self.chainer, link_type))
# self.chainer.add_rule(rules.NotCreationRule(self.chainer))
# self.chainer.add_rule(rules.NotEliminationRule(self.chainer))
# for rule in rules.create_and_or_rules(self.chainer, 1, 5):
# self.chainer.add_rule(rule)
# self.chainer.add_rule(EvaluationToMemberRule(self.chainer))
# self.chainer.add_rule(MemberToInheritanceRule(self.chainer))
def run(self, atomspace):
# incredibly exciting futuristic display!
#import os
#os.system('cls' if os.name=='nt' else 'clear')
# try:
if self.chainer is None:
self.create_chainer(atomspace)
result = self.chainer.backward_step()
if result:
(outputs, inputs) = result
if False:
print '==== Inference ===='
print show_atoms(outputs), '<=', show_atoms(inputs)
print
print '==== Attentional Focus ===='
for atom in get_attentional_focus(atomspace)[0:30]:
print str(atom), atom.av
#print '==== Result ===='
#print output
#print '==== Trail ===='
#print_atoms( self.chainer.trails[output] )
if self.chainer._all_nonzero_tvs(inputs):
raw_input()
else:
print 'Invalid inference attempted'
示例10: create_chainer
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
def create_chainer(atomspace, rule_concept_nodes):
"""
:param atomspace: the atomspace to be used by the chainer
:param concept_nodes: list of ConceptNodes where the name is the name of a
rule optionally amended by a link_type separated with ":", e.g.
[ConceptNode "ModusPonensRule:ImplicationLink"]
:return: the chainer that has been created
"""
chainer = Chainer(atomspace,
stimulateAtoms=False,
allow_output_with_variables=True,
delete_temporary_variables=True)
for rule_concept_node in rule_concept_nodes:
rule_name, link_type = rule_concept_node.name.split(":")
chainer.add_rule(rules[rule_name](chainer, link_types[link_type]))
return chainer
示例11: InferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class InferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace, stimulateAtoms=False)
self.chainer.add_rule(
ModusPonensRule(self.chainer, types.ImplicationLink))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
return
result = self.chainer.forward_step()
return result
示例12: InferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class InferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
self.antecedents = []
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace,
agent=self,
stimulateAtoms=True,
preferAttentionalFocus=True,
delete_temporary_variables=True,
allow_output_with_variables=True)
self.chainer.add_rule(
ModusPonensRule(self.chainer, types.ImplicationLink))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
implications = atomspace.get_atoms_by_type(types.ImplicationLink)
for implication in implications:
outgoing = atomspace.get_outgoing(implication.h)
and_link = outgoing[0]
self.antecedents.append(and_link)
return
# Run a forward step of the chainer with the ModusPonensRule so as to
# perform inference using the "domain rules" defined as
# ImplicationLinks
self.chainer.forward_step()
# Run a backward step of the chainer with the AndCreationRule for each
# of the antecedents of the defined "domain rules" so as to
# successfully ground the variables.
for antecedent in self.antecedents:
num_predicates = len(atomspace.get_outgoing(antecedent.h))
self.chainer.backward_step(
AndCreationRule(self.chainer, num_predicates), [antecedent])
return
示例13: TemporalAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class TemporalAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace,
stimulateAtoms=False,
preferAttentionalFocus=False,
allow_output_with_variables=True,
delete_temporary_variables=True)
for rule in create_temporal_rules(self.chainer):
self.chainer.add_rule(rule)
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
return
result = self.chainer.forward_step()
return result
示例14: BackwardAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class BackwardAgent(MindAgent):
def __init__(self):
self.chainer = None
def create_chainer(self, atomspace):
self.chainer = Chainer(atomspace,
stimulateAtoms=False,
allow_output_with_variables=True,
delete_temporary_variables=True)
self.chainer.add_rule(
ModusPonensRule(self.chainer, types.ImplicationLink))
def run(self, atomspace):
if self.chainer is None:
self.create_chainer(atomspace)
print "PLN Chainer created."
return
result = self.chainer.backward_step()
return result
示例15: ForwardInferenceAgent
# 需要导入模块: from pln.chainers import Chainer [as 别名]
# 或者: from pln.chainers.Chainer import add_rule [as 别名]
class ForwardInferenceAgent(MindAgent):
def __init__(self):
self.chainer = None
def run(self, atomspace):
if self.chainer is None:
self.chainer = Chainer(atomspace, stimulateAtoms = True, agent = self)
self.chainer.add_rule(rules.InversionRule(self.chainer))
self.chainer.add_rule(rules.DeductionRule(self.chainer))
# incredibly exciting futuristic display!
#import os
#os.system('cls' if os.name=='nt' else 'clear')
try:
result = self.chainer.forward_step()
if result:
(output, inputs) = result
print '==== Inference ===='
print output,str(output.av),'<=',' '.join(str(i)+str(output.av) for i in inputs)
print
print '==== Attentional Focus ===='
for atom in get_attentional_focus(atomspace)[0:30]:
print str(atom), atom.av
#print '==== Result ===='
#print output
#print '==== Trail ===='
#print_atoms( self.chainer.trails[output] )
else:
print 'Invalid inference attempted'
except Exception, e:
print e