本文整理汇总了Python中pinball.workflow.name.Name类的典型用法代码示例。如果您正苦于以下问题:Python Name类的具体用法?Python Name怎么用?Python Name使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Name类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _simulate
def _simulate(self):
"""Simulate execution of active jobs."""
tokens = self._store.read_tokens()
satisfied_deps = set()
executed_jobs = []
jobs = {}
for token in tokens:
event_name = Name.from_event_token_name(token.name)
if event_name.event:
satisfied_deps.add((event_name.input, event_name.job))
else:
job_name = Name.from_job_token_name(token.name)
if job_name.job:
job = pickle.loads(token.data)
jobs[job.name] = job
dep_counts = collections.defaultdict(int)
while satisfied_deps:
last_satisfied_deps = satisfied_deps
satisfied_deps = set()
for (_, job_name) in last_satisfied_deps:
dep_counts[job_name] += 1
if dep_counts[job_name] == 2:
executed_jobs.append(job_name)
job = jobs[job_name]
for output in job.outputs:
satisfied_deps.add((job_name, output))
return executed_jobs
示例2: set_action
def set_action(self, action):
"""Send a signal with a specific action to the master.
Local signal store gets updated with the new action if it is
successfully submitted to the master. If the communication with the
master fails, locally stored signals get refreshed.
Args:
action: The action to set.
"""
attributes = {}
if action == Signal.ABORT:
attributes[Signal.TIMESTAMP_ATTR] = time.time()
elif action == Signal.EXIT:
attributes[Signal.GENERATION_ATTR] = PinballConfig.GENERATION
signal = self._signals.get(action)
if signal and signal.attributes == attributes:
return
# A signal with the same action but different data may already exist
# in the master.
signal_token = self._get_signal_token(action)
if not signal_token:
name = Name(workflow=self._workflow, instance=self._instance,
signal=Signal.action_to_string(action))
signal_token = Token(name=name.get_signal_token_name())
signal = Signal(action, attributes)
signal_token.data = pickle.dumps(signal)
request = ModifyRequest(updates=[signal_token])
if self._send_request(request):
self._signals[action] = signal
示例3: _get_instances_using_cache
def _get_instances_using_cache(self, workflow):
"""Get workflow instances, preferably from the cache.
As a side effect, archived instances that do not exist in the cache
will be added to the cache.
Args:
workflow: The name of the workflow whose instances we are
interested in.
Returns:
List of instances for the given workflow.
"""
name = Name(workflow=workflow)
workflow_prefix = name.get_workflow_prefix()
workflow_token_names = self._store.read_token_names(
name_prefix=workflow_prefix)
instances_prefixes = DataBuilder._get_instance_prefixes(
workflow_token_names)
result = []
for prefix in instances_prefixes:
name = Name.from_instance_prefix(prefix)
assert name.workflow and name.instance, (
'Expected instance prefix, found %s' % prefix)
result.append(self.get_instance(name.workflow, name.instance))
return result
示例4: _get_jobs
def _get_jobs(self, workflow, job):
"""Get job definitions from the store across all workflow instances.
Args:
workflow: The name of the job workflow.
instance: The name of the job instance.
job: The name of the job.
Returns:
Matching job definition.
"""
name = Name(workflow=workflow)
name_prefix = name.get_workflow_prefix()
# This is a bit hacky since we bypass the Name module where all the
# token naming logic is supposed to be located.
# TODO(pawel): extend the Name module to support abstractions needed
# here.
name_infix = '/job/'
name_suffix = '/%s' % job
job_tokens = self._store.read_tokens(name_prefix=name_prefix,
name_infix=name_infix,
name_suffix=name_suffix)
result = []
for job_token in job_tokens:
job_record = pickle.loads(job_token.data)
result.append(job_record)
return result
示例5: get_schedule
def get_schedule(self, workflow):
"""Get workflow schedule data from the store.
Args:
workflow: The name of the workflow whose schedule should be
retrieved.
Returns:
The workflow schedule or None if it was not found.
"""
name = Name(workflow=workflow)
schedule_token_name = name.get_workflow_schedule_token_name()
tokens = self._store.read_tokens(name_prefix=schedule_token_name)
if tokens:
for token in tokens:
if token.name == schedule_token_name:
schedule = pickle.loads(token.data)
overrun_policy_help = OverrunPolicy.get_help(
schedule.overrun_policy)
return WorkflowScheduleData(
next_run_time=schedule.next_run_time,
recurrence_seconds=schedule.recurrence_seconds,
overrun_policy=schedule.overrun_policy,
overrun_policy_help=overrun_policy_help,
workflow=schedule.workflow,
parser_params=schedule.parser_params,
emails=schedule.emails,
max_running_instances=schedule.max_running_instances)
return None
示例6: _get_instance_using_cache
def _get_instance_using_cache(self, workflow, instance):
"""Get workflow instance, preferably from the cache.
As a side effect, if the instance is archived and it does not exist in
the cache, it will be added to the cache.
Args:
workflow: The name of the workflow whose instance we are
interested in.
instance: The instance we are interested in.
Returns:
The workflow instance or None if it was not found.
"""
name = Name(workflow=workflow, instance=instance)
instance_prefix = name.get_instance_prefix()
data = self._store.get_cached_data(instance_prefix)
if data:
instance_data = pickle.loads(data)
else:
# Cache only archived instances.
if self._store.read_archived_token_names(
name_prefix=instance_prefix):
# The ordering of operations is important. We need to make
# sure that we add to the cache instance data constructed from
# the archived tokens.
instance_data = self._get_instance_no_cache(workflow, instance)
self._store.set_cached_data(instance_prefix,
pickle.dumps(instance_data))
else:
instance_data = self._get_instance_no_cache(workflow, instance)
return instance_data
示例7: _query_and_own_runnable_job_token
def _query_and_own_runnable_job_token(self, workflow, instance):
"""Attempt to own a runnable job token from a given workflow instance.
Try to own a runnable job token in a given workflow instance. The
ownership of the qualifying job token lasts for a limited time so it
has to be periodically renewed.
Args:
workflow: The name of the workflow whose jobs should be considered.
instance: The workflow instance whose jobs should be considered.
"""
assert not self._owned_job_token
name = Name(workflow=workflow,
instance=instance,
job_state=Name.RUNNABLE_STATE)
query = Query()
query.namePrefix = name.get_job_state_prefix()
query.maxTokens = 1
request = QueryAndOwnRequest()
request.query = query
request.expirationTime = time.time() + Worker._LEASE_TIME_SEC
request.owner = self._name
try:
response = self._client.query_and_own(request)
if response.tokens:
assert len(response.tokens) == 1
self._owned_job_token = response.tokens[0]
except TokenMasterException:
LOG.exception('error sending request %s', request)
示例8: is_signal_set
def is_signal_set(self, workflow, instance, action):
"""Check if a signal is set.
Args:
workflow: The workflow whose signal should be checked. If None,
signals at the global level are checked.
instance: The workflow instance whose signal should be checked. If
not None, a matching workflow name must be provided.
If None, signals at the workflow and the global level are
checked.
action: The signal action to check.
Returns:
True iff the signal exists in the specified context.
"""
for (workflow_name, instance_name) in [(workflow, instance),
(workflow, None),
(None, None)]:
name = Name(workflow=workflow_name, instance=instance_name,
signal=Signal.action_to_string(action))
token_name = name.get_signal_token_name()
tokens = self._store.read_tokens(token_name)
assert len(tokens) <= 1
if tokens:
return True
return False
示例9: _is_done
def _is_done(self, workflow, instance):
"""Check if the workflow instance is done.
A workflow is done if it does not have runnable jobs.
Returns:
True if we are certain that the workflow is not running. Otherwise
False. If there were any errors during communication with the
master, the return value is False.
"""
# Attempt to make the workflow runnable and verify that no WAITING job
# tokens were changed in the meantime.
name = Name(workflow=workflow,
instance=instance,
job_state=Name.WAITING_STATE)
query = Query(namePrefix=name.get_job_state_prefix())
request = QueryRequest(queries=[query])
try:
snapshot = Snapshot(self._client, request)
except:
LOG.exception('error sending request %s', request)
return False
if not self._make_runnable(workflow, instance):
return False
if not self._has_no_runnable_jobs(workflow, instance):
return False
try:
return not snapshot.refresh()
except:
LOG.exception('error sending request %s', request)
return False
示例10: _make_runnable
def _make_runnable(self, workflow, instance):
"""Attempt to make jobs in a given workflow instance runnable.
Go over all waiting jobs in a given workflow instance and try to make
them runnable.
Args:
workflow: The name of the workflow whose jobs should be considered.
instance: The workflow instance whose jobs should be considered.
Returns:
True if there were no errors during communication with the master,
otherwise False.
"""
name = Name()
name.workflow = workflow
name.instance = instance
name.job_state = Name.WAITING_STATE
query = Query(namePrefix=name.get_job_state_prefix())
# TODO(pawel): to prevent multiple workers from trying to make the
# same job runnable at the same time, this should be a
# QueryAndOwnRequest. Note that the current implementation is correct,
# just inefficient.
request = QueryRequest(queries=[query])
try:
response = self._client.query(request)
except TokenMasterException:
LOG.exception('error sending request %s', request)
return False
assert len(response.tokens) == 1
for token in response.tokens[0]:
if not self._make_job_runnable(token):
return False
return True
示例11: get_workflow_tokens
def get_workflow_tokens(self):
"""Create Pinball tokens representing a workflow instance.
Convert workflow jobs to tokens and create event tokens in inputs of
top-level jobs.
Returns:
A list of job and event tokens representing a workflow instance.
"""
all_jobs = self._get_transitive_deps()
instance = get_unique_workflow_instance()
result = []
for job in all_jobs:
result.append(job.get_job_token(self.name, instance))
top_level_jobs = self._get_top_level_jobs()
for job in top_level_jobs:
event = Event(creator='parser')
event_name = Name(workflow=self.name,
instance=instance,
job=job.name,
input_name=Name.WORKFLOW_START_INPUT,
event='workflow_start_event')
result.append(Token(name=event_name.get_event_token_name(),
data=pickle.dumps(event)))
return result
示例12: _read_tokens_from_store
def _read_tokens_from_store(self, store):
"""Read archived job tokens from the store.
Args:
store: The store to read tokens from.
"""
name = Name(workflow=self._workflow, instance=self._instance)
tokens = store.read_archived_tokens(
name_prefix=name.get_instance_prefix())
self._filter_job_tokens(tokens)
示例13: _post_signal_tokens
def _post_signal_tokens(self):
"""Add some signal tokens to the master."""
request = ModifyRequest(updates=[])
signal = Signal(action=Signal.EXIT)
name = Name(signal='exit')
signal_token = Token(name=name.get_signal_token_name())
signal_token.data = pickle.dumps(signal)
request.updates.append(signal_token)
signal = Signal(action=Signal.DRAIN)
name.signal = 'drain'
name.workflow = 'some_workflow'
signal_token = Token(name=name.get_signal_token_name())
signal_token.data = pickle.dumps(signal)
request.updates.append(signal_token)
name.instance = '123'
signal_token = Token(name=name.get_signal_token_name())
signal_token.data = pickle.dumps(signal)
request.updates.append(signal_token)
signal = Signal(action=Signal.ABORT)
name.signal = 'abort'
signal_token = Token(name=name.get_signal_token_name())
signal_token.data = pickle.dumps(signal)
request.updates.append(signal_token)
client = self._factory.get_client()
client.modify(request)
示例14: _generate_signal_tokens
def _generate_signal_tokens(workflows):
result = []
for w in range(0, workflows, 2):
workflow = 'workflow_%d' % w
signal = Signal(Signal.DRAIN)
name = Name(workflow=workflow,
signal=Signal.action_to_string(signal.action))
result.append(Token(name=name.get_signal_token_name(),
version=10000000000 * w,
data=pickle.dumps(signal)))
return result
示例15: _get_schedule_token
def _get_schedule_token():
name = Name(workflow='workflow_0')
now = int(time.time())
token = Token(name=name.get_workflow_schedule_token_name(),
owner='some_owner',
expirationTime=now - 10)
schedule = WorkflowSchedule(next_run_time=now - 10,
recurrence_seconds=10,
workflow='workflow_0')
token.data = pickle.dumps(schedule)
return token