本文整理汇总了Python中photutils.CircularAperture类的典型用法代码示例。如果您正苦于以下问题:Python CircularAperture类的具体用法?Python CircularAperture怎么用?Python CircularAperture使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了CircularAperture类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: autocorr
def autocorr(self, ell_mask_scale=2, aperture_radius=5, annulus_width=4):
# Compute 2D autocorrelation function
try:
masked_image = self.masked_image.copy()
if ell_mask_scale > 0:
masked_image.mask |= ~self.elliptical_mask(ell_mask_scale)
masked_image = masked_image.filled(0.0)
fft_imgae = np.fft.fft2(masked_image)
acorr_image = np.fft.ifft2(fft_imgae * np.conjugate(fft_imgae)).real
acorr_image = np.fft.ifftshift(acorr_image)
ny, nx = masked_image.shape
yy, xx = np.mgrid[:ny, :nx]
circ = CircularAperture([nx // 2, ny // 2], r=aperture_radius)
ann = CircularAnnulus([nx // 2, ny // 2],
r_in=aperture_radius,
r_out=aperture_radius + annulus_width)
ann_mean = aperture_photometry(
acorr_image, ann)['aperture_sum'][0] / ann.area()
circ_mean = aperture_photometry(
acorr_image, circ)['aperture_sum'][0] / circ.area()
except:
acorr_image = np.nan
circ_mean = np.nan
ann_mean = np.nan
return acorr_image, circ_mean, ann_mean
示例2: plot_light_curves
def plot_light_curves(diff_cube, unique_extracted_objects):
frame_data = [i for i in range(len(diff_cube))]
colors = [(random.uniform(0.5, 1),random.uniform(0.5, 1),random.uniform(0.5,1)) for i in range(len(unique_extracted_objects))]
plt.figure(figsize=(20,10))
for i, extracted_obj in enumerate(unique_extracted_objects):
ap_data=[]
plt.figure(i, figsize=(10, 12))
for frame in diff_cube:
diff_cube_test = frame.copy()
flux, fluxerr, flag = sep.sum_ellipse(diff_cube_test, x=extracted_obj[0], y=extracted_obj[1], a=extracted_obj[2], b=extracted_obj[3], theta=extracted_obj[4])
#flux /= diff_cube_test.sum()
ap_data.append(flux)
plt.ylim((0,800))
plt.plot(frame_data, ap_data, '-o', color=colors[i],linewidth=5.0, )
plt.show()
plt.figure(2, figsize=(10, 12))
plt.imshow(diff_cube[1], cmap='gray', vmin=1, vmax=12)
plt.colorbar()
for i, extracted_obj in enumerate(unique_extracted_objects):
positions = (extracted_obj[0], extracted_obj[1])
apertures = CircularAperture(positions, r=5.)
apertures.plot(color=colors[i], linewidth=10.0, lw=2.5, alpha=0.5)
示例3: measure_one_median_bg
def measure_one_median_bg(image, center, aperRad, metric, nSig, apMethod='exact'):
"""Class methods are similar to regular functions.
Note:
Do not include the `self` parameter in the ``Args`` section.
Args:
param1: The first parameter.
param2: The second parameter.
Returns:
True if successful, False otherwise.
"""
aperture = CircularAperture(center, aperRad)
aperture = aperture.to_mask(method=apMethod)[0]
aperture = aperture.to_image(image.shape).astype(bool)
backgroundMask = ~aperture
medFrame = median(image[backgroundMask])
madFrame = std(image[backgroundMask])
medianMask= abs(image - medFrame) < nSig*madFrame
maskComb = medianMask*backgroundMask
return median(image[maskComb])
示例4: measure_one_annular_bg
def measure_one_annular_bg(image, center, innerRad, outerRad, metric, apMethod='exact'):
"""Class methods are similar to regular functions.
Note:
Do not include the `self` parameter in the ``Args`` section.
Args:
param1: The first parameter.
param2: The second parameter.
Returns:
True if successful, False otherwise.
"""
innerAperture = CircularAperture(center, innerRad)
outerAperture = CircularAperture(center, outerRad)
inner_aper_mask = innerAperture.to_mask(method=apMethod)[0]
inner_aper_mask = inner_aper_mask.to_image(image.shape).astype(bool)
outer_aper_mask = outerAperture.to_mask(method=apMethod)[0]
outer_aper_mask = outer_aper_mask.to_image(image.shape).astype(bool)
backgroundMask = (~inner_aper_mask)*outer_aper_mask
return metric(image[backgroundMask])
示例5: plot_peaks
def plot_peaks(box, x_peaks, y_peaks, radius=None, title=None, vmin=None, vmax=None):
"""
This function plots the data with peaks marked ...
:param box:
:param x_peaks:
:param y_peaks:
:return:
"""
# Determine the maximum value in the box and the minium value for plotting
if vmin is None: vmin = max(np.nanmin(box), 0.)
if vmax is None: vmax = 0.5 * (np.nanmax(box) + vmin)
# Set the normalization
norm = ImageNormalize(stretch=SqrtStretch())
# Make the plot
plt.figure(figsize=(8,2.5))
plt.imshow(box, origin='lower', norm=norm, interpolation='nearest', vmin=vmin, vmax=vmax, cmap="viridis")
if radius is None: plt.plot(x_peaks, y_peaks, ls='none', color='white', marker='+', ms=40, lw=10, mew=4)
else:
positions = (x_peaks, y_peaks)
apertures = CircularAperture(positions, r=radius)
apertures.plot(color='green', lw=1.5, alpha=0.5)
plt.xlim(0, box.shape[1]-1)
plt.ylim(0, box.shape[0]-1)
if title is not None: plt.title(title)
plt.show()
示例6: plot
def plot(sources, data, path):
positions = (sources['xcentroid'], sources['ycentroid'])
apertures = CircularAperture(positions, r=4.)
norm = ImageNormalize(stretch=SqrtStretch())
plt.imshow(data, cmap='Greys', origin='lower', norm=norm)
apertures.plot(color='blue', lw=1.5, alpha=0.5)
plt.savefig(path)
示例7: show_image
def show_image(self,sourceRA,sourceDEC,refRA=None,refDEC=None, ref2RA=None, ref2DEC=None):
print('RED circle is the cepheid. WHITE circle is the reference object(s).')
print('Add more reference stars by defining ref1aper = blahblahbelow, and ref1aper.plot(etc...)')
#aper_annulus = CircularAnnulus((sourceRA, sourceDEC), r_in=6., r_out = 8.)
apertures = CircularAperture((self.worldcoord.wcs_world2pix(sourceRA,sourceDEC,0)), r=10)
#ref2aper = CircularAperture((worldcoord.wcs_world2pix(ref2RA,ref2DEC,0)), r=7)
#ref3aper = CircularAperture((worldcoord.wcs_world2pix(ref3RA,ref3DEC,0)), r=3.5)
#darkaper = CircularAperture((worldcoord.wcs_world2pix(darkRA,darkDEC,0)), r=3.5)
fig = plt.figure()
fig.add_subplot(111, projection = self.worldcoord)
plt.imshow(self.stardata,origin='lower', cmap='jet')
apertures.plot(color='red',lw=5, alpha=1)
if refRA != None:
ref1aper = CircularAperture((self.worldcoord.wcs_world2pix(refRA,refDEC,0)), r=10)
ref1aper.plot(color='red', lw=5, alpha=1)
#apertures2.plot(color='white',lw=2.0,alpha=0.5)
#largeaperture.plot(color='red', lw=1.5, alpha=0.5)
if ref2RA != None:
ref2aper = CircularAperture((self.worldcoord.wcs_world2pix(ref2RA,ref2DEC,0)), r=10)
ref2aper.plot(color='red', lw=5, alpha=1)
示例8: plot_light_curves
def plot_light_curves(diff_cube, unique_extracted_objects):
# The diff_cube has to be byte swapped BEFORE being sent as parameter (diff_cube.byteswap(True).newbyteorder()), otherwise the method is not goint to work. Unique_extracted_objects only work for elliptic-shapped apertures
# We get the number of frames from the cube
frame_data = [i for i in range(len(diff_cube))]
# Random colours array
colours = [
(random.uniform(0.5, 1), random.uniform(0.5, 1), random.uniform(0.5, 1))
for i in range(len(unique_extracted_objects))
]
maxVal = 0
minVal = float("inf")
plt.figure(2, figsize=(10, 12))
# Bonus: Show the image with the sources on the same colour than the plots.
if len(diff_cube) == 1:
plt.imshow(diff_cube[0], cmap="gray", vmin=1, vmax=12)
else:
plt.imshow(diff_cube[1], cmap="gray", vmin=1, vmax=12)
plt.colorbar()
for i, extracted_obj in enumerate(unique_extracted_objects):
positions = (extracted_obj[0], extracted_obj[1])
apertures = CircularAperture(positions, r=5.0)
apertures.plot(color=colours[i], linewidth=10.0, lw=2.5, alpha=0.5)
# For every object we are going to calculate the aperture
plt.figure(1, figsize=(20, 12))
for i, extracted_obj in enumerate(unique_extracted_objects):
ap_data = []
# The standard size of each independent figure
# plt.figure(i, figsize=(10, 12))
# For every frame...
for frame in diff_cube:
diff_cube_test = frame.copy()
# The parameters passed in order are x, y, a, b and theta
flux, fluxerr, flag = sep.sum_ellipse(
diff_cube_test,
x=extracted_obj[0],
y=extracted_obj[1],
a=extracted_obj[2],
b=extracted_obj[3],
theta=extracted_obj[4],
)
ap_data.append(flux)
maxVal = np.maximum(maxVal, np.max(ap_data))
minVal = np.minimum(minVal, np.min(ap_data))
# Hard-coded value!!! ALERT!!!
# Plot every curve as a dotted line with the points visible
plt.plot(frame_data, ap_data, "-o", color=colours[i], linewidth=5.0)
plt.ylim((minVal * 1.1, maxVal * 0.9))
# Voila
plt.show()
示例9: starbright
def starbright(fnstar,fnflat,istar,axs,fg):
#%% load data
data = meanstack(fnstar,100)[0]
#%% flat field
flatnorm = readflat(fnflat,fnstar)
data = (data/flatnorm).round().astype(data.dtype)
#%% background
mean, median, std = sigma_clipped_stats(data, sigma=3.0)
rfact=data.shape[0]//40
cfact=data.shape[1]//40
bg = Background(data,(rfact,cfact),interp_order=1, sigclip_sigma=3)
# http://docs.astropy.org/en/stable/units/#module-astropy.units
#dataphot = (data - bg.background)*u.ph/(1e-4*u.m**2 * u.s * u.sr)
# data = (data-0.97*data.min()/bg.background.min()*bg.background) * u.ph/(u.cm**2 * u.s * u.sr)
data = data* u.ph/(u.cm**2 * u.s * u.sr)
#%% source extraction
sources = daofind(data, fwhm=3.0, threshold=5*std)
#%% star identification and quantification
XY = column_stack((sources['xcentroid'], sources['ycentroid']))
apertures = CircularAperture(XY, r=4.)
norm = ImageNormalize(stretch=SqrtStretch())
flux = apertures.do_photometry(data,effective_gain=camgain)[0]
#%% plots
fg.suptitle('{}'.format(fnflat.parent),fontsize='x-large')
hi = axs[-3].imshow(flatnorm,interpolation='none',origin='lower')
fg.colorbar(hi,ax=axs[-3])
axs[-3].set_title('flatfield {}'.format(fnflat.name))
hi = axs[-2].imshow(bg.background,interpolation='none',origin='lower')
fg.colorbar(hi,ax=axs[-2])
axs[-2].set_title('background {}'.format(fnstar.name))
hi = axs[-1].imshow(data.value,
cmap='Greys', origin='lower', norm=norm,interpolation='none')
fg.colorbar(hi,ax=axs[-1])
for i,xy in enumerate(XY):
axs[-1].text(xy[0],xy[1], str(i),ha='center',va='center',fontsize=16,color='w')
apertures.plot(ax=axs[-1], color='blue', lw=1.5, alpha=0.5)
axs[-1].set_title('star {}'.format(fnstar.name))
return flux[istar]
示例10: phot
def phot(self, image, objpos, aper):
"""
Aperture photometry using Astropy's photutils.
Parameters
----------
image : numpy array
2D image array
objpos : list of tuple
Object poistions as list of tuples
aper : float
Aperture radius in pixels
Returns
-------
phot_table : astropy table
Output table with stellar photometry
"""
try:
from astropy.table import hstack
from photutils import aperture_photometry, CircularAnnulus, CircularAperture
except ImportError:
pass
apertures = CircularAperture(objpos, r = aper)
annulus_apertures = CircularAnnulus(objpos, r_in = self.inner_radius, r_out = self.outer_radius)
rawflux_table = aperture_photometry(image, apertures = apertures, method = self.method)
bkgflux_table = aperture_photometry(image, apertures = annulus_apertures, method = self.method)
phot_table = hstack([rawflux_table, bkgflux_table], table_names = ["raw", "bkg"])
bkg = phot_table["aperture_sum_bkg"] / annulus_apertures.area()
phot_table["msky"] = bkg
phot_table["area"] = apertures.area()
phot_table["nsky"] = annulus_apertures.area()
bkg_sum = bkg * apertures.area()
final_sum = phot_table["aperture_sum_raw"] - bkg_sum
phot_table["flux"] = final_sum
return phot_table
示例11: process_file
def process_file(inpath, file_name, t_constant, sigma, fwhm, r, kernel_size, outpath, plot):
print "Processing " + file_name
hdulist = fits.open(inpath + file_name)
image = hdulist[0].data
if isinstance(sigma, list):
threshold = calc_sigma(image, sigma[0], sigma[1]) * t_constant
else:
threshold = t_constant*sigma
median_out = signal.medfilt(image,kernel_size)
median_sub = np.subtract(image,median_out)
sources = daofind(median_sub, threshold, fwhm)
sources_2 = np.array(sources["id", "xcentroid", "ycentroid", "sharpness", "roundness1", "roundness2", "npix", "sky", "peak", "flux", "mag"])
print_line= (file_name+","+str(sources_2))
base_name = os.path.splitext(file_name)[0]
file = open(outpath + base_name + ".out", "a")
file.write(print_line)
file.close()
positions = (sources['xcentroid'], sources['ycentroid'])
# print positions
apertures = CircularAperture(positions, r)
phot_table = aperture_photometry(median_sub, apertures)
phot_table_2 = np.array(phot_table["aperture_sum", "xcenter", "ycenter"])
print_line= (","+str(phot_table_2)+"\n")
file = open(outpath + base_name + ".out", "a")
file.write(print_line)
file.write("\n")
file.close()
hdulist[0].data = median_sub
file = open(outpath + base_name + ".fits", "w")
hdulist.writeto(file)
file.close()
if plot:
median_sub[median_sub<=0]=0.0001
plt.imshow(median_sub, cmap='gray', origin='lower')
apertures.plot(color='blue', lw=1.5, alpha=0.5)
plt.show()
示例12: find_stars
def find_stars(image, plot = False, fwhm = 20.0, threshold=3.):
from astropy.stats import sigma_clipped_stats
mean, median, std = sigma_clipped_stats(image, sigma=3.0)
from photutils import daofind
sources = daofind(image - median, fwhm=fwhm, threshold=threshold*std)
# stars already found accurately, vet_sources will be implemented when working properly
# vet_sources(10.0,10.0)
if plot == True:
# from astropy.visualization import SqrtStretch
# from astropy.visualization.mpl_normalize import ImageNormalize
positions = (sources['xcentroid'], sources['ycentroid'])
apertures = CircularAperture(positions, r=4.)
#norm = ImageNormalize(stretch=SqrtStretch())
#plt.imshow(image, cmap='Greys', origin='lower', norm=norm)
qi.display_image(image)
apertures.plot(color='blue', lw=1.5, alpha=0.5)
return sources
示例13: calc_bkg_rms
def calc_bkg_rms(ap, image, src_ap_area, rpsrc, mask=None, min_ap=6):
if isinstance(ap, CircularAnnulus):
aback = bback = ap.r_in + rpsrc
ap_theta = 0
elif isinstance(ap, EllipticalAnnulus):
aback = ap.a_in + rpsrc
bback = ap.b_in + rpsrc
ap_theta = ap.theta
ecirc = ellip_circumference(aback, bback)
diam = 2*rpsrc
# Estimate the number of background apertures that can fit around the source
# aperture.
naps = np.int(np.round(ecirc/diam))
# Use a minimum of 6 apertures
naps = np.max([naps, min_ap])
#naps = 6
theta_back = np.linspace(0, 2*np.pi, naps, endpoint=False)
# Get the x, y positions of the background apertures
x, y = ellip_point(ap.positions[0], aback, bback, ap_theta, theta_back)
# Create the background apertures and calculate flux within each
bkg_aps = CircularAperture(np.vstack([x,y]).T, rpsrc)
flux_bkg = aperture_photometry(image, bkg_aps, mask=mask)
flux_bkg = flux_bkg['aperture_sum']
flux_bkg_adj = flux_bkg/bkg_aps.area() * src_ap_area
# Use sigma-clipping to determine the RMS of the background
# Scale to the area of the source aperture
me, md, sd = sigma_clipped_stats(flux_bkg_adj, sigma=3)
bkg_rms = sd
return bkg_rms, bkg_aps
示例14: plot
def plot(self,scale='log'):
apertures = CircularAperture([self.locx,self.locy], r=self.r)
z = self.copy()
z -= np.nanmedian(z)
if scale=='log':
z = np.log10(self)
z = ma.masked_invalid(z)
z.mask = z.mask | (z < 0)
z.fill_value = 0
z = z.filled()
imshow2(z)
if self.pixels is not None:
for i,pos in enumerate(self.pixels):
r,c = pos
plt.text(c,r,i,va='center',ha='center',color='Orange')
apertures.plot(color='Lime',lw=1.5,alpha=0.5)
plt.xlabel('Column (pixels)')
plt.ylabel('Row (pixels)')
示例15: do_phot
def do_phot(image,position,radius = 5, r_in=15., r_out=20.):
aperture = CircularAperture(position,r=radius)
bkg_aperture = CircularAnnulus(position,r_in=r_in,r_out=r_out)
# perform the photometry; the default method is 'exact'
phot = aperture_photometry(image, aperture)
bkg = aperture_photometry(image, bkg_aperture)
# calculate the mean background level (per pixel) in the annuli
bkg_mean = bkg['aperture_sum'] / bkg_aperture.area()
bkg_sum = bkg_mean * aperture.area()
#look at ipython notebook; his may need editing; 'phot' in second line below may need brackets with 'flux_sum' inside
#phot['bkg_sum'] = bkg_sum
#phot['flux_sum'] = phot['flux'] - bkg_sum
#these two lines from ipython notebook
flux_bkgsub = phot['aperture_sum'] - bkg_sum
phot['aperture_sum_bkgsub'] = flux_bkgsub
return phot